BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION

2021-2022

SI. No.	Subject Code	Subject Title		Нс	ours/Week		Exa	minatio Marks	n
			Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT418C	Molecular Biology	3	3	0	0	50	50	100
2	UBT406C	Immunotechnology	3	3	0	0	50	50	100
3	UBT412C	Heat and Mass Transfer	3	3	0	0	50	50	100
4	UBT415C	Biostatistics & Bio- modeling	3	2	2	0	50	50	100
5	UBT419C	Thermodynamics	3	3	0	0	50	50	100
6	UBT408L	Molecular Biology Lab	1.5	0	0	3	50	50	100
7	UBT410L	Immunotechnology Lab	1	0	0	2	50	50	100
8	UBT412L	Biostatistics Lab	1.5	0	0	3	50	50	100
9	UHS001N	Fundamentals of Quantitative Aptitude & Soft skills	1.0	1	0	0	50	50	100
10	UHS004M	Universal Human Values-II	0	3	0	0	50	50	100
		Total	20	18	02	8	500	500	1000

B.E. IV SEMESTER

UBT418C		Credi	ts: 03
L:T:P - 3:0:0	MOLECULAR BIOLOGY	CIE Ma	rks: 50
Total Hours/Week: 03		SEE Ma	rks: 50
	UNIT-I		12 Hrs.
Signalling (signal transductior and anticodon. Replication:	n)-molecular mechanism. Reverse genetics, Ger	netic code-its fea	tures, codon
Replication-basic concepts, str replication in prokaryotes and	ructure and function of DNA polymerases, ligases d eukaryotes, End replication problem in eukary	s, helicase. mecha otes, telomerase	nism of DNA and its role,
Replication-basic concepts, sto replication in prokaryotes and DNA damage & Repair (Photo	ructure and function of DNA polymerases, ligases d eukaryotes, End replication problem in eukary reactivation, excision repair, recombinational rep UNIT-II	s, helicase. mecha votes, telomerase pair, SOS repair).	anism of DNA and its role 10 Hrs.
Replication-basic concepts, str replication in prokaryotes and DNA damage & Repair (Photo Transcription: Mechanism of transcription in of RNA polymerases (proka processing, Si RNA, Antisense Translation: Protein synthesis: Initiators, El function of prokaryotic and prokaryotic and eukaryotic pro	ructure and function of DNA polymerases, ligases d eukaryotes, End replication problem in eukary reactivation, excision repair, recombinational rep UNIT–II n prokaryotes and eukaryotes, Bacterial RNA polyr aryotes & eukaryotes), general transcription RNA technology. longation factors, termination codons, Mechanisr eukaryotic ribosomes, Post translational modif otein synthesis, inhibitors of translation.	s, helicase. mecha votes, telomerase pair, SOS repair). merase, structure factors, post tr m of translation, S fication. Difference	anism of DN and its role 10 Hrs. and functio anscriptiona Structure an ces betwee

Regulation of gene expression in prokaryotes: Operon model-structure and function, galactose and lactose operon, tryptophan Operon-regulation by attenuation mechanism; positive versus negative regulation, cyclic AMP effect/catabolite repression.

Gene Expression in Eukaryotes:

Regulation of eukaryotic gene expression, hormonal regulation- peptide and steroid hormones, transcriptional control, super secondary structures-Helix turns Helix. Zinc fingers and Leucine Zippers. Gene silencing- methylation, chromatin modification.

10 Hrs.

Transposons and Oncogenes:

Transposons-replicative and non replicative mechanisms, Insertion sequences, AC/DS elements, transposition in maize (McClintock's work), Cut and paste transposition, Oncogenes and Protooncogenes, Tumour suppressor genes, retroviruses and its life cycle.

Genetic Recombination:

Genetic recombination in bacteria- transformation, transduction and recombination, Mechanism of recombination-homologous (Holliday model), site specific recombination.

Reference Books *

- 1. David Nelson and Michael Cox, (2017), Lehninger Principles of Biochemistry (6th Edition), W.H. Freeman
- 2. James Watson (2008), Molecular Biology of the Gene (5th Edition) Pearson Education

UNIT-IV

3. David Freifelder, (2008), Essentials of Molecular Biology (2nd Edition), Narosa Publishing House

Course Outcomes**

After completion of the course student will be able to

- 1. Emphasize on the basic aspects of molecular biology; the key areas and apply the knowledge in information flow in biological systems, reverse genetics and genetic code.
- 2. Classify and compare the mechanism of DNA repair processes, replication.
- 3. Acquire working knowledge on the mechanism of transcription, translation and post translational processes stepwise and their applications in the research.
- 4. Identify the various mechanism of gene regulation in prokaryotes and eukaryotes.
- 5. Identify the steps of transposition and concept of oncogenes.
- 6. Identify, describe and classify the molecular mechanism of genetic recombination.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	1	3	2	1	-	-	-	-	-	3	1	-
CO2	1	-	1	3	3	2	2	-	-	-	-	-	3	2	-
CO3	1	-	1	3	2	1	1	-	-	-	-	-	3	1	-
CO4	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-
CO5	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-
CO6	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-

UBT406C		Credits: 03
L:T:P - 3:0:0	IMMUNOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10Hrs.
The immune system: Introduction, Cells and Organs cells. Primary (thymus, bone m spleen, MALT, CALT). Innate complement activation, (classic compliment activation. Cyto applications.	of the immune system: Lymphoid cells, phagocyte harrow and lymphatic system) and secondary Lymp and adaptive immunity. Antigens, Antibodi cal, alternative and lectin pathway) regulation and okines and their role in immune response. M	es, mast cells and dendritic hoid organs (lymph nodes, les, Complement system- biological consequences of onoclonal antibodies and
	UNIT–II	10 Hrs.
Introduction to humoral and cell mediated im immuno globulins; immunoglobul determinants on immunoglobu types, T-cell maturation and a Major Histocompatibility Com macrophages, mechanism of pl	munity: ell mediated immunity. B-lymphocytes and their ac obulin classes (IgG, IgA, IgE, IgD and IgM) and bi lin's- Isotype, Allotype and Idiotype. Thymus derive ctivation, mechanisms of T cell activation. Cell dea oplex and antigen presentation. Antigen presen	tivation; Basic structure of ological activity. Antigenic d lymphocytes (T cells) and ath and T-cell populations. ting cells, dendritic cells,
	UNIT-III	10 Hrs.
Hypersensitivity reactions and diseases, Animal models for a secondary immunodeficiency rejection, Types of transplantat Vaccines: Active and Passive vaccines, Inactive vaccines, sub	d its types. Autoimmune disorders- Organ specific autoimmune diseases and treatment of autoimm disorders (AIDS). Transplantation Immunology: im cions. immunization. Designing vaccines for active immu unit vaccines, recombinant vector vaccines and DN/	une disease. Primary and munological basis of graft unization: Live, attenuated A vaccines.
		10Hrs.
Immunodiagnosis: Antigen-antibody reactions- Pr Principal and applications of electrophoresis, Non-isotopic Purification and synthesis of an	recipitation reactions, agglutination reactions, Bloc of ELISA, Radio immuno assay (RIA), western methods of detection of antigens - Enhanced tigens.	od typing A, B, ABO & Rh. blot analysis, immuno- chemiluminescence assay.
Reference Books *		
 Roitts, (2017), Essential Kuby, J.(2019), Immunol Chakravarthy, A.K.(2006 Rastogi, S. C. (2005), Imr 	mmunology (13th edition), Wiley Blackwell ogy(8th edition), W H Freeman publishers),Immunology & Immunotechnology, Oxford Univer nunodiagnostics (1 st Edition), New Age Internationa	sity Press
Course Outcomes**		
 After completion of the course 1. Understand Immune sys 2. Analyze the humoral and 3. Explain the immunologic 4. Evaluate the Transplanta 	student will be able to tem. d cell mediated immune system. cal disorders. ation immunology.	

4. Evaluate the Transplantation immunology.

5. Understand the designing of Vaccines.

6. Understand Ag Ab reaction and applications of Electrophoresis in Immunology.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				F	Progra	amme	e Out	come	s (PO	s)			Progra Out	amme S comes (P	Specific 'SOs)
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	2	-	-	-	-	2	-	-	-	3	-	1	3
CO 2	2	2	1	3	2	-	3	-	-	-	-	3	3	1	3
CO 3	3	1	1	-	2	2	3	1	-	-	-	3	1	1	2
CO 4	2	2	2	2	2	2	-	-	-	-	-	2	-	2	1
CO 5	3	1	2	-	2	-	1	1	-	-	-	2	1	-	2
CO 6	2	2	2	-	-	1	-	-	-	-	-	2	2	3	2

UBT412C		Credits	s: 03
L:T:P –3:0:0	HEAT AND MASS TRANSFER	CIEMark	s:50
Total Hours/Week: 03		SEEMark	ks:50
			40.11
	UNIT-I		10 Hrs.
Introduction to Heat Transfer	r:		
Modes of heat transfer; Cond	duction – steady state heat conduction through uni	-layer and mult	tilayer plane
wall sphere, cylinder; Insulation	on – types, critical radius, Optimum thickness of insi	ulation. Forced	and Natural
convection; Significance of Di	mensionless numbers (Nu, Gr, Pr, Re, Pe numbers d	nly); Heat tran	ster without
phase change, heat transfer	in laminar and turbulent flow inside closed condu	icts, concepts	of film heat
transfer coefficients.			
	UNIT–II		10 Hrs.
Heat Transfer Equipment's:			
Equations and numerical prot	plem for calculations of film heat transfer coefficient	s, Heat transfe	r with phase
change - Condensation – film	wise and drop wise; Boiling – types of boiling. Co c	urrent and cou	nter current
flow. Individual and overall	Heat transfer coefficients, LMTD, Elementary de	sign of double	e pipe heat
exchanger and shell and tube	heat exchanger.		
	UNIT–III		10 Hrs.
Basics of Mass Transfer:			
Diffusion - Fick's law of diff	usion. Measurement of diffusivity, Theories of ma	iss transfer, M	lass transfer
coefficients and their correla	ations. Liquid-Liquid, Solid-Liquid, Liquid-Gas, Solid	-Liquid-Gas Ma	ass transfer.
Principles, mass transfer co	onsiderations, design equations and equipments	for leaching,	extraction,
absorption, adsorption, crysta	allization and evaporation		
	UNIT–IV		10 Hrs.
Mass transfer Operations- Di	stillation:	I	
Methods of distillation –Sim	ple, Flash distillation of binary mixtures – relative	volatility, frac	tionation of
binary mixtures -McCabe Th	iele method, Extractive and Azeotropic distillation,	numerical. Dr	ying: Drying
rate, drying curve and calcula	tions, drying equipment.		
Reference Books *			
1. McCabe WL. Smith JC a	and Harriott (2005) Unit operations in Chemical Engi	neering. 7th Ed	In., McGraw-
Hill Publications, USA		, i i i i i i i i i i i i i i i i i i i	,
2. Treybal RE (2012) Mass	Transfer Operations, 3rd Edition, McGraw-Hill Publi	cations, USA.	
3. R.P.Chhabra V. Shankar	r (2018) Coulson and Richardson's Chemical Enginee	ring Volume He	eat and Mass
Transfer: Fundamenta	ls and Applications, 7th Edition, Butterworth- Hei	nemann	
4. Pauline Doran (2012) B	ioprocess Engineering Principles, 2nd Edition, Acade	mic Press	
5. Alan S Foust, Wenzel L	A, Clump CW, Maus L and Anderson LB (2008). Pri	nciples of Unit	Operations,
2nd Edn. John Wiley &	SUNS, USA. Dat Transfor and Edn. McCraw Hill Publications, USA	,	
7 Derry RH and Groon	eat fransier, zhu eun. witteraw-Hill Publications, USA	\. 	
Publications.	2000, reny s chemical Engineering fidhu bu	or, our curi. N	
Course Outcomes**			

After completion of the course student will be able to

- 1. Define the different modes of heat transfer and solve the problems
- 2. Determine heat flux and temperature distribution in steady state one- dimensional problems using thermal resistance concept.
- 3. Estimate the heat transfer rate for different types of heat exchangers.
- 4. Predict mass transfer rates and mass transfer coefficients.
- 5. Estimate the number of theoretical plates required for effective separation of liquid mixtures.
- 6. Determine various parameters of mass transfer operations.

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Prog	gram	me (Dutc	ome	s (PO	s)			Prog Outo	gram Spe comes (P	cific SOs)
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	2	2	2	2	1	-	-	-	-	-	-	1	2	-	-
CO2	3	2	3	3	2	-	-	-	-	-	-	2	2	-	-
CO3	2	3	2	2	1	-	-	-	-	-	-	1	2	-	-
CO4	3	2	1	1	1	-	-	-	-	-	-	1	2	-	-
CO5	2	3	3	2	1	-	-	-	-	-	-	1	2	-	-
CO6	2	2 2 2 1 1											2	-	-

L: T: P - 2:2:0

Total Hours/Week: 04

BIOSTATISTICS & BIO-MODELING

Credits: 03 CIE Marks: 50

SEE Marks: 50

UNIT-I

10 Hrs.

Introduction and Descriptive Statistics:

Scope of biostatistics, presentation of data, Diagrammatic and graphical represent, (simple, multiple, component bar diagrams, pie chart, histogram, frequency polygon, frequency curve, ogive curve). Measure of central tendency (meaning of central tendency, arithmetic mean, median, Quartiles, mode, geometric mean, harmonic mean their merits and demerits). Measure of dispersion: meaning, range, quartile deviation, mean deviation and standard deviation, coefficient of variation, skewness and kurtosis. Correlation and linear regression analysis, curve fitting straight line).

UNIT-II

10Hrs.

Probability and Probability Distributions:

Definition of probability, Event, Mutual Exclusive, Independent, Complimentary Events Addition and Multiplication theorem of probability and examples. Discrete probability distributions: Bernoulli's, Binomial and Poisson distribution. Continuous probability distribution – normal, Standard normal variate, properties of normal curve, T, F and χ^2 (Chi square -goodness of fit test) distributions and their applications in Biology.

- UNIT-III 10 Hrs. **Statistical Inference , ANOVA and Design of Experiments:** Estimation theory and testing of hypothesis point estimation, interval estimation. Sample, population, sample size determination. Methods of Sampling techniques- random (simple, stratified and systematic) non random sampling -(Judgement and convenience). Definition of analysis of variance(one way and two way classifications), Basic principles of experimental design and limitations-randomization,
- replication, local control, Types of statistical designs of biological experiments and limitations-CRD, RCBD, LSD, Plackett-Burmann design, Response surface methodology(RSM).
 - UNIT-IV

10 Hrs.

Bio-modeling:

Microbial Growth in a Chemo-stat, Growth Equations of Microbial Populations, product formation models, Models of Commensalisms, Batch culture model, Mutualism, Predation and Mutation. Simple Prey predator model, Volterra's Model for n Interacting Species. Basic Models for Inheritance, Applications of probability in genetics, Hardy - Weinberg law. Selection and Mutation Models, Genetic Inbreeding Models. Dose response studies.

Reference Books *

- 1.Khan and Khanum, (2008),Fundamentals of Biostatistics(3rd edition), Ukaaz Publication
- 2.Kapur J.N.(2001), Mathematical Models in Biology and Medicine(1st edition), New age international Pvt. Ltd.
- 3. Agarwal B.L. (2009), Basic statistics (5th edition), New age international Publishers
- 4.Rastogi V. B.(2006), Fundamentals of Biostatistics, Ane Books

Course Outcomes**

After completion of the course student will be able to

- 1. Demonstrate and understand the basic concepts of biostatistics, analysis of measure of central tendency and dispersion.
- 2. Ability to know the basic principles of probability and distributions in Biology and Genetics
- 3. Analyse and interpret data regarding various distributions (T-test, F-test, and chi square)
- 4. Basic principles and designs of experimentation and ANOVA
- 5. Perform experimental design (RSM, Plakett Burman, LSD, CRD, RCBD)
- 6. Ability to study the microbial growth in chemostat, product formation and biomodelling in various parameters

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ogran	nme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	3	-	-	-	-	-	2	2	2	1	1
CO2	3	3	3	3	3	2	-	-	-	-	1	3	2	1	2
CO3	2	3	1	3	3	-	-	-	-	-	1	2	2	1	1
CO4	2	3	1	3	3	-	-	-	-	-	1	-	-	-	-
CO5	3	1	2	_	2	-	1	1	-	-	-	2	1	-	2
CO6	2	2	2	-	-	1	-	-	-	_	_	2	2	3	2

UBT419C		Credits: 03						
L: T: P - 3:0:0	THERMODYNAMICS	CIE Marks: 50						
Total Hours/Week: 03		SEE Marks: 50						
		·						
	UNIT-I	10 Hrs.						
Introduction								
System, surrounding & proces	sses, closed and open systems, intensive & extensive	e properties, state and path						
functions, equilibrium state,	reversible and irreversible processes. First Law of	Thermodynamics: General						
Second law of thermodynam	ics & P-V-T behaviour	101113.						
General statement of the se	econd law concent of entropy the Carnot princi	nle calculation of entrony						
changes Clausius inequality	entropy and irreversibility, third law of thermody	namics P-V-T behaviour of						
pure fluids equations of st	ate and ideal gas law processes involving ideal	ranies. I v i benaviour or						
constant prossure constant	temperature adiabatic and polytropic processes	gas law. constant volume,						
principles of corresponding st	temperature, adiabatic and polytropic processes	. Equations of real gases,						
principles of corresponding st		40.0.0						
UNIT-III 1								
Effect of temperature on U, Fugacity, fugacity coefficier Activity and activity coefficier	H & Entropy (S), relationships between Cp & Cv, nt, Determination of fugacity of pure gases, fugac nt, Thermodynamic diagrams. Properties of solutions	Gibbs Helmholtz equation. city's of solids and liquids.						
, ,		10 Hrs.						
Thermodynamic Properties o	f Pure Fluids							
Partial molar properties, Ch	emical potential, Gibbs-Duhem equation & its a	oplications, Henry's law &						
Raoult's law. Criteria of phas	e Equilibria, criterion of stability, Duhem's theorem	n, Vapour- Liquid Equilibria:						
VLE in ideal solutions, Consist	tency test for VLE data, calculation of activity coeffi	cients using Gibbs - Duhem						
equation, Liquid-Liquid Equili	brium diagrams.							
Reference Books *								
1. Smith JM and Van Ness McGraw Hill Publications	HC (2004) Introduction to Chemical Engineering th s, USA.	nermodynamics, 6th Edition,						
2. Stanley I. Sandler (2006)	Chemical and Engineering Thermodynamics, 4th Edu	n., John Wiley & Sons, USA.						
3. Narayanan KV (2001) A India.	Textbook of Chemical Engineering Thermodynamic	cs, Prentice Hall Publication,						
4. Bailey JE and Ollis DF (20	10) Biochemical Engg. Fundamentals, 2nd Edition, M	IcGraw Hill, New York, USA.						
5. Kao YVC (1997) Chemica	i Engineering Thermodynamics, New Age Internation	iai, india.						
7. Shuler ML and Kargi F Eruster L (2013) Bioener	(2001) Bioprocess Engineering, 2nd Edn., Prentice getics. Academic Press. New York.	Hall International, USA. 5.						
Course Outcomes**								
Atter completion of the cours	e student will be able to							

1. Explain the fundamental concepts of the laws of thermodynamics and apply the first law of thermodynamics to solve engineering problems.

- 2. Understand the second law of Thermodynamics and apply in engineering problems and solve the problems related to properties of fluids.
- 3. Estimate the thermodynamic properties, such as enthalpies, entropies, Gibbs energies, fugacity coefficients, and activity coefficients of pure fluids as well as fluid mixtures.
- 4. Analyze and find properties such as Pressure, Volume and Temperature for equations of states. Calculate entropy for the processes, and various types of energies such as internal energy, enthalpy, Helmholtz free energy and Gibbs free energy.
- 5. Predict equilibrium compositions of mixtures under phase.
- 6. Generate Vapor Liquid Equilibrium data for ideal and non-ideal solutions and check for their consistency by various methods.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograr	nme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	-	-	-	-	-	-	-	1	2	-	-
CO2	2	2	3	3	-	-	-	-	-	-	-	1	2	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	1	2	-	-
CO4	2	2	2	3	-	-	-	-	-	-	-	1	2	-	-
CO5	2	2	3	2	-	-	-	-	-	-	-	1	2	_	-
CO6	3	3	2	3	-	-	-	-	-	-	-	1	2	-	-

UBT408L

L: T: P – 0:0:3

MOLECULAR BIOLOGY LAB

Credits: 1.5

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

LIST OF EXPERIMENTS IN MOLECULAR BIOLOGY LABORATORY

- 1. Study of standard practices in Molecular Biology Lab
- 2. Standard Operating Procedure for Centrifuge.
- 3. Standard Operating Procedure for Gel Documentation Unit.
- 4. Study of absorption spectra of nucleic acids.
- 5. Agarose gel electrophoresis.
- 6. Isolation of genomic DNA (plant / animal / microbial sources).
- 7. Isolation of plasmid DNA from E. coli.
- 8. Estimation of DNA by diphenyl method.
- 9. Estimation of RNA by orcinol method.
- 10. Purity of nucleic acids, protein by UV-Vis Spectrophotometer.
- 11. PAGE (DEMO).

Reference Books *

1. Sadashiva and Manickam, (2017), Biochemical Methods, (2nd Edition), W.H. Freeman

2. Sambrook& Russell, (2002), Molecular Cloning, (3rd Edition), Cold Spring Harbor Lab.

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze the concentration and purity of DNA.
- 2. Conduct and analyze Agarose gel electrophoresis.
- 3. Perform absorption spectra and understand SOP for various lab equipments.
- 4. Conduct observations and experiments including Genomic DNA/plasmid DNA /RNA/protein.
- 5. Demonstrate the knowledge of quantification and purity analysis of biomolecules.
- 6. Gain knowledge in demonstration of PAGE.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	3	1	-	-	-	-	-	1	2	1	-
CO2	1	2	2	1	3	2	-	-	-	-	-	1	2	2	-
CO3	1	2	2	1	3	1	-	-	-	-	-	1	1	1	-
CO4	2	2	3	2	3	2	-	-	-	-	-	1	2	2	-
CO5	1	2	3	1	3	1	-	-	-	-	-	1	3	3	-
CO6	1	1	3	2	3	1	-	-	-	-	-	1	3	3	-

UBT410L

L: T: P - 0:0:2

IMMUNOTECHNOLOGY LABORATORY

Credit: 01

CIE Marks: 50

Total Hours/Week: 02

SEE Marks: 50

LIST OF EXPERIMENTS IN IMMUNOTECHNOLOGY LABORATORY

- 1. Agglutination Technique: Blood group identification and Rh factor
- 2. Laboratory diagnosis of diseases-Widal test (Tube agglutination) and VDRL
- 3. Ouchterlony Double Diffusion (ODD)
- 4. Radial Immunodiffusion (RID)
- 5. Countercurrent immunoelectrophoresis (CCIEP)
- 6. Rocket immunoelectrophoresis (RIEP)
- 7. Western blot (IGg Purification)
- 8. ELISA/ DOT Blot.
- 9. Quantitative precipitin assay (QPA).

Reference Books *

- 1. Roitts, (2017), Essential Immunology (13th edition), Wiley Blackwell
- 2. Kuby, J.(2019), Immunology (8th edition), W H Freeman publishers
- 3. Chakravarthy, A.K.(2006), Immunology & Immunotechnology, Oxford University Press
- 4. Rastogi, S. C. (2005), Immunodiagnostics (1st Edition), New Age International

Course Outcomes**

After completion of the course student will be able to

- 1. Understand Immune system.
- 2. Analyze the humoral and cell mediated immune system..
- 3. Explain the immunological disorders.
- 4. Evaluate the Transplantation immunology.
- 5. Understand the designing of Vaccines.
- 6. Understand Ag Ab reaction and applications of Electrophoresis in Immunology.

Course				P	rogra	amme	e Out	come	s (PO	s)			Prog Ou	ramme S tcomes (I	pecific PSOs)
Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12												PSO2	PSO3
CO 1	3	3	2	-	-	-	-	2	-	-	-	3	-	1	3
CO 2	2	2	1	3	2	-	3	-	-	-	-	3	3	1	3
CO 3	3	1	1	-	2	2	3	1	-	-	-	3	1	1	2
CO 4	2	2	2	2	2	2	-	-	-	-	-	2	-	2	1
CO 5	3	1	2	-	2	-	1	1	-	-	-	2	1	-	2
CO 6	2	2	2	-	-	1	-	-	-	-	-	2	2	3	2

UBT412L

L: T: P - 0:0:3

BIOSTATISTICS LAB

Credits: 1.5 CIEMarks:50 SEEMarks:50

Total Hours/Week: 03

LIST OF EXPERIMENTSIN BIOSTATISTICS LABORATORY

- 1. Procedure for creating Data file, Diagram and Graphs.
- 2. Procedure and calculation of Mean, Median, Mode, Standard Deviation and Variance.
- 3. Calculation of Regression and correlation
- 4. Procedure and calculation of t, Z and F test.
- 5. Calculation of Chi-square test.
- 6. ANOVA- one-way analysis
- 7. ANOVA- two-way analysis.
- 8. Experimental Research Design CRD- Analysis.
- 9. Experimental Research design RBD- Analysis.
- 10. Experimental Research design Latin square Design- Analysis.
- 11. Placket-Burman Design for media optimization.
- 12. Response Surface Methodology for media optimization.

Reference Books *

- 1. Khan and Khanum, (2008), Fundamentals of Biostatistics (3rd edition), Ukaaz Publication
- 2. Kapur J.N.(2001), Mathematical Models in Biology and Medicine(1st edition), New age international Pvt. Ltd.
- 3. Agarwal B.L. (2009), Basic statistics(5th edition), New age international Publishers
- 4. Rastogi V. B.(2006), Fundamentals of Biostatistics, Ane Books

Course Outcomes**

After completion of the course student will be able to

- 1. Draw graphs, charts, enter the data using statistical software tools
- 2. Calculate measures of dispersion and central tendency
- 3. Analyse the t, z and f test
- 4. Solve and analyze ANOVA
- 5. Know the different types of experimental designs with case studies
- 6. Aware of media optimization techniques using statistical designs

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course					Prog	ramm	ne Out	tcome	S				Programme Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	1	3	-	-	-	-	-	-	1	2	2	1	1
CO 2	3	3	2	3	3	-	-	-	-	-	2	2	2	1	-
CO 3	2	3	3	2	2	2	-	-	-	-	-	3	2	1	-
CO 4	3	3	1	3	3	2	-	-	-	-	-	3	2	1	2
CO 5	2	3	1	3	3	-	-	-	-	-	1	2	2	1	1
CO 6	1	3	1	3	2	-	-	-	-	-	-	2	2	1	1

VI SEMESTER

SI.	Subject	Subject Title		Hours/		Examination Marks			
INO.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT615C	Enzyme kinetics and Biotransformation	3	3	0	0	50	50	100
2	UBT616C	Upstream Processing Technology	3	2	2	0	50	50	100
3	UBT617C	Bioprocess Equipment Design	3	2	2	0	50	50	100
4	UHS003N	Career Planning and Professional Skills	1	1	0	0	50	50	100
5	UBT62XE	Elective-2	3	3	0	0	50	50	100
6	UBT62XE	Elective-3	3	3	0	0	50	50	100
7	UBT632N	Environmental Technology (OE)	3	3	0	0	50	50	100
8	UHS004M	Universal Human Values-II	0	3	0	0	50	50	100
9	UBT615L	Bio-kinetics & Enzyme Technology Lab	1	0	0	2	50	50	100
10	UBT614L	Upstream Processing Lab	1	0	0	2	50	50	100
11	UBT609P	Mini Project	3	0	0	3	50	50	100
		Total	24	20	04	7	550	550	1100

Elective-2&3

UBT621E Microbial BT UBT623E Plant BT UBT625E Biofuels technology UBT627E Tissue engineering UBT622E Genomics & Proteomic UBT624E Animal BT UBT626E Pearl programming UBT628E Transport phenomena

1	otal Hours/Week: 03			SEE Ma	rks: 50							
		UNIT-I			10 Hrs.							
Enzy Mec plot Mul	Mechanism of enzyme action. Derivations of Km value (Michaelis-Menton constant), Lineweaver-Burk plot., Enzyme inhibition and kinetics Multi-Substrate Reactions: Introduction to enzyme catalyzed reaction Ping-pong mechanism, Sequential mechanism (ordered and random). Enzyme models - Host quest complexation chemistry.											
rand	, lom), Enzyme models - Ho	ost guest complexation chemistry		,								
		UNIT–II			10 Hrs.							
Enzy Stra for char Imm Tech imm of n	matic Techniques: tegies of purification of en- purity, tests for cataly racterization of enzymes. nobilization of enzymes: nniques of enzyme immobio pobilized enzymes, immobiovel enzymes	nzymes: choice of source, methods of homogytic activity, active site titrations, Molect pilization; design and configuration of immob pilized enzymes in bioconversion processes(u	genizat ular v ilized e ses). T	tion, Criteria of weight determ enzyme reaction he design and	purity: tests ination and ns,Kinetics of construction							
		UNIT–III			10 Hrs.							
Enzy Enzy angi Use	mes of biological importa- me pattern in diseases otensin converting enzym of isozymes as markers in	like in Myocardial infarctions (SGOT, SGF ne (ACE), 5'- nucleotidase (5NT), glucose-6- cancer.	PT, & phosp	LDH) Acetylch hate dehydrog	olinesterase, enase (GPD).							
		UNIT–IV			10 Hrs.							
Indu Enzy of g oxid	istrial uses of enzymes: ymes used in detergents, i lucose syrup from starch ase and catalase in food ir	use of proteases, leather and wool industries (using starch hydrolyzing enzymes).Uses of ndustry. Uses of proteases in food industries.	s; metl lactas	hods involved i e in dairy indu	n production stry, glucose							
		Reference Books *										
1. 2. 3	Trevor Palmer (2008). Er Ltd, East-West Press, 2 nd David L. Nelson and Mich Nicholas C. Price and Le	nzymes: Biochemistry , Biotechnology, Clinica ¹ Edition. nael Cox (2017). "Lehninger Principles of Bioch wis Stevens (2009) Fundamentals of Enzymo	al Cher nemist	nistry. Horwoo ry" –7th Editior Dxford universi	d Publishing 1. ty Press 3 rd							
4.	edition. James R Hanson (1997).	"An Introduction to Biotransformation in Org	anic Ch	nemistry" Oxfor	d university							
5. 6.	Daniel L. Purich, Melvin Mechanism" Academic p K. Faber (1999). Biotrans	n I. Simon, John N. Abelson (2009). Con ress, 3 rd edition. formations in Organic: Springer- Verlag.1 st Ed	tempo ition,.	rary Enzyme k	(inetics and							
7.	Balley and Ollis (2017). "I	Biochemical Engineering Fundamentals", INC	graw H	III 2 [™] EQ.								
		Course Outcomes**										

ENZYME KINETICS AND BIOTRANSFORMATION

Credits: 03

CIE Marks: 50

After completion of the course student will have the

UBT615C

L:T:P - 3:0:0

- 1. Ability to understand mechanism of enzyme reactions.
- 2. Ability to understand how to characterize the enzymes.

- 3. Ability to apply the techniques of immobilization of enzymes and know its uses.
- 4. Ability to know the importance of enzymes in diagnostics.
- 5. Ability to know the application of enzymes in wool, leather and detergent industries.
- 6. Ability to apply knowledge of using enzymes in food industries.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	1	1	3	1	-	2		-	-	-	-	1	3	2	-
CO2	3	3	2	2	-	3	2	-	-	-	-	-	3	1	-
CO3	3	2	-	2	-	2	-	-	-	-	-	-	3	3	-
CO4	2	3	1	1	-	2	4	-	-	-	-	-	3	1	-
CO5	2	3	-	1	-	-	-	-	-	-	-	-	3	2	-
CO6	2	3	3	2		3	2			-	-	1	3	-	-

UBT616C	
L:T:P - 3:0:0	

Total Hours/Week: 03

UNIT-II

UNIT-III

UNIT-IV

10 Hrs.

10 Hrs.

12 Hrs.

10 Hrs.

Fermentation process

Range of fermentation processes, chronological development of fermentation industry, component of the fermentation process. Basic functions of a fermenter for microbial, plant and animal cell culture. Body parts of fermentor, aseptic operation and containment. Sterilization of fermentors. Types of Fermentors, Classification of Fermentation Systems: Batch, fed batch and continuous process and their applications.

Scale Up: Process engineering concepts, engineering considerations, mechanical considerations, energy considerations. Process GMP considerations of scale up, operations and quality.

Raw materials and media sterilization

Media requirement for typical fermentation process, selection of typical raw materials, types of fermentation media. Preparation and handling of fermentation media, sterilization and its practical limits, Batch sterilization, Continuous sterilization and Filter sterilization.Different methods for optimization (Plackett-Burman Design, RSM)

Microbial system

Isolation of industrially important microorganisms, Strain development methods, Preservation of industrially important microorganisms. Development of inoculumfrom laboratory scale to pilot scale and large scale fermentation (for bacterial, yeast, mycelial processes). Criteria for the transfer of inoculum. Aseptic transfer of inoculum to the fermentor. Trouble shooting during fermentation process (microbial contamination). **Secondary metabolite production:** secondary metabolite production in bacteria, yeast and fungi. Production of lactic acid, butanol, antibiotics and enzymes.

Plant Cell system

Isolation and culture of single cells, Bioprocess using plant cell cultures. Bioreactors for suspension cultures, immobilized cells and organized tissues. Secondary metabolite enhancement techniques (alkaloids, steroids, phenolics).

Animal Cell system :

Scale up of animal cell culture, factors affecting cell culture, Batch reactors, continuous culture, and perfusion systems. Scale up of monolayer culture- roller bottles, nunc cell factory microcarriers culture. Growth monitoring.

Genetically engineered cells for bioprocessing; process, selection of host vectors, process constraints- genetic instability, mass transfer and others.

Large scale production of insulin by mammalian cell culture. Cellbank preparation & cell reviving techniques **Monoclonal antibody production:** SUDBRCS (Single use disposable bioreactor configuration, types of production (perfusion culture, submerged culture, suspended adhered culture).

Reference Books *

1. Principles of fermentation Technology by P.F. Stanbury and A. Whitaker,

Butterworth-Heinemann; 3rd Edition,2016.

- 2. Bioprocess Engineering by Michael L. Shuler, Shuler & Kargi, Fikret Kargi, Pearson Publishers, 2nd Edition, 2012.
- 3. Plant Cell Culture: A Practical Approach by R.A. Dixon & Gonzales, IRL Press.2nd Edition, 1995.

- 4. Introduction to plant Biotechnology by H.S. Chawla, , Oxford & IBH Publishers, 3nd Edition, 2018.
- 5. Introduction to Plant tissue Culture, M.K. Razdan, Oxford & IBH Publishers, 3rd Edition, 2019
- 6. Culture of animal cells by Ian Freshney , John Willey & Sons Publ. 7th Edition.2016

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the fermenter and fermentation processes
- 2. Prepare and sterilize the industrial media
- 3. Design and optimize the media formulation using design of experiments
- 4. Develop the inoculum and improve the strain for industrially important microorganism
- 5. Distinguish the bioreactors for various cell systems
- 6. Develop plant & animal system for fermentation process and to use the Genetically modified cell into the fermentation process

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3		
CO1	3	2	-		2	-	1	-	-	-	-	1	3	2	-	
CO2	3	3	-	3	-	-	2	-	-	-	-	1	2	-	-	
CO3	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-	
CO4	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-	
CO5	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-	
CO6	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-	

UBT617C	UBT617C Credits											
L:T:P –2:2:0	BIOPROCESS EQUIPMENT DESIGN	CIEMarks	s:50									
Total Hours/Week: 04		SEEMarks	s:50									
	UNIT-I		10 Hrs.									
Process design of double pipe	e heat exchanger:											
Introduction to heat exchanger, Functional design – Energy balance equation, log mean temperature difference (co-current, counter current), Heat transfer coefficients (inside, outside & overall), area, length, number of hair pins, diameter of tube. Pressure drop calculations. Detailed drawing of sectional front view of Heat exchanger.												
	UNIT–II		10 Hrs.									
Process design of shell & tub	e heat exchanger:											
Introduction to Heat Exchard difference (co-current, counternumber of tubes, tube sheet thickness of shell, thickness of side. Detailed drawing of sect	nger, Functional design – Energy balance equation er current), Heat transfer coefficients (inside, outside t diameter, pitch type, diameter of tube sheet. N f tube sheet, thickness of head, pressure drop calcul ional front view of Heat exchanger (1-1, 1-2) with tu	n, log mean te e and overall), a 1echanical desig ations – tube sig be sheet layout.	emperature irea, length, gn – baffle, de and shell									
	UNIT–III		10 Hrs.									
Process design of fermenter:												
Functional design-Based on the type of bioreactor (batch reactor & MFR) and cell growth kinetics and performance equation, determines the volume of the reactor, according to H/D ratio determine height and diameter. Mechanical design- Thickness of the shell (cylindrical, spherical), thickness of top & bottom cover, flange calculations – width and thickness of gasket, number of bolts, bolts circle diameter and bolt diameter.												
	UNIT-IV		10 Hrs.									
Process design of plate colun	nn distillation column:											
Functional design- material k method, Mass transfer coeff Detailed drawing for the abov	palance, energy balance, height of the packed colu icients, Diameter of columns (Top and bottom), to ve design (showing clearly inlets, outlets liquid distrib	mn using McCa p and bottom putors, packing s	abe Thiele's free space. support)									
	Reference Books *											
 Joshi, M.V., Process Equipment Design, Macmillan India, 1991. Brownell, L.E. and Young, E.H., Process Equipment Design - Vessel Design, John Wiley and Sons, Inc.1959. Ludwig, E.E., Applied Process Design for Chemical and Petrochemical Plants, Vol. 1 and 2, 3rd Ed., Gulf Publishing Co. 1997. Indian Standards Institution, Code for Unfired Pressure Vessels, IS – 2825. Bhattacharya, B.C, Introduction to Chemical Equipment Design, CBS Publications, 1985. Perry's Chemical Engineers Handbook. 7th Edition McGraw Hill Publications 												
	Course Outcomes**											
After completion of the course 1. Understand the application heat exchangers 2. Solve problems related	e student will be able to ation of heat exchangers in industries and can desc to heat exchangers referring the data book	ribe the types o	of industrial									

- 3. Apply the knowledge of design concepts of double pipe heat exchanger and their parts in Engineering applications
- 4. Apply the knowledge of design concepts of shell & tube heat exchanger and their parts in Engineering applications
- 5. Apply the knowledge of different types of bioreactors and their design concepts in Industrial applications
- 6. Apply the knowledge of design concepts of distillation column and their parts in Industrial applications

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Prog	gram	me (Dutc	ome	s (PC)s)			Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12												2	3	
CO1	2	3	3	2	2	-	-	-	-	-	-	2	2	-	-	
CO2	2	3	2	3	1	-	-	-	-	-	-	2	2	-	-	
CO3	2	3	3	2	2	-	-	-	-	-	-	2	2	-	-	
CO4	2	3	3	3	1	-	-	-	-	-	-	2	2	-	-	
CO5	2	2	3	2		-	-	-	-	-	-	2	2	-	-	
CO6	2	3	2	2	1	-	-	-	-	-	-	2	2	-	-	

UBT621E		Credits: 03
L:T:P – 3:0:0	MICROBIAL BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
Microbial biotechnology	
a) In Bacteria: Genetic Transfer in bacteria, Transformation, Conjugation, Translation, cloning	g techniques,
polymerase chain reaction, expression of cloned Genes, Recovery and purification of expressed p	roteins.
b) In Yeast: Introduction of DNA into yeast cells, yeast cloning vectors, expression of foreign ge	enes in yeast,
expression of foreign gene products in secreted form.	
UNIT-II	10 Hrs.
Industrial microbiology	
Vitamins as laxatives and analgesics: non steroidal contraceptives, external antiseptics, antacid	s and others.
Antibiotics and hormones. Impact of Biotechnology on vaccine development: sub unit vaccines.	fragments of
antigen sub unit as synthetic peptide vaccines. Production of Microbial enzymes, stra	in -medium.
fermentation processes. Large scale application of Microbial enzymes - starch processing, text	ile designing.
detergents, cheese industry.	
UNIT 3	10 Hrs.
Microbial by products	
nature xanthan Gum - structure, production & Biosynthesis polyesters. Saccherification & f Metabolites from microorganisms, Amino acids, antibiotics. Organic synthesis & Degradation, cla enzymes, microbial transformation of steroids & sterols. Environmental microbiology Sewage & Waster water microbiology, Microbiological Degradation of xenobiotics microorganism recovery microorganisms in the removal of heavy metals from aqueous effluents. Food microbiology Microbial spoilage of food and its control; food preservatives; fermented foods; single cell prot single cell oil (SCO); food borne infections and their control.	ermentation. assification of ms in mineral ein (SCP) and
UNIT-IV	10 Hrs.
Uses of Bacteria in Bioremediation – Biodegradation of hydrocarbons, Granular sludge of bioremediation, crude oil degradation by bacteria. Immobilization of microbes for bio	consortia for

- 1. Fundamentals of Biotechnology. Edited by Paule Prave, Uwe Faust, Wolfgang Sitting and Dieter A Sukatsch. VCH Publishers.
- 2. Principles of fermentation Technology, P.F. Stanbury and A. Whitaker, Pergamon Press, 1984.
- Alexander N Glazer, Hiroshi Nikaido by Microbial Biotechnology, W H Freeman & Company New York,2005
- 4. Bernard Davis & Renato Dulbecco Microbiology by, Lippincott Company, Philadelphia. 2000
- 5. Prit S J Principle of Microbe & Cell Cultivation, Blackwell Scientific co).1975

Course Outcomes**

After completion of the course student will be able to

- 1. Able to study about Genetic Transfer in bacteria cloning techniques.
- 2. Able to study industrial microbiology.
- 3. Able to study production & Biosynthesis microbial by products.
- 4. Able to know Uses of Bacteria in Bioremediation
- 5. Able to analyse microbial products.
- 6. Able to understand phytoremediation.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action	n word and should be assessable and quantif	iable
---	---	-------

Course				Pro	Programme Specific Outcomes										
Outcomes	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3		
CO 1	2	2	2	-	-	2	2	2	-	-	-	-	1	1	1
CO 2	2	2	2	-	-	3	2	1	-	-	-	-	2	1	-
CO 3	3	3	2	-	2	2	2	1	-	-	-	1	1	1	-
CO 4	3	3	3	-	2	3	3	2	-	-	-	1	2	1	3
CO 5	2	2	2	-	2	2	3	1	-	-	-	1	2	1	2
CO 6	2	2	2	3	2	2	1	1	-	-	-	1	1	1	2

UBT623E		Credits: 03
L:T:P – 3:0:0	PLANT BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

10 Hrs.

Plant genetic engineering

Induction of tumours by Agrobacterium, introduction of binary vectors into Agrobacterium by triparental mating, leaf disc transformation using Agrobacterium, GUS expression in transformed tissues, extraction of DNA from transformed plants, Southern hybridization to check plant

22 transformation, PCR amplification of T-DNA in transformed plant tissues. Agrobacterium mediated gene transfer and cloning. Types of plant vectors and their use in gene manipulation. Viruses as a tool to delivery foreign DNA.

Transformation technology

Plant transformation technology -Basis of tumor formation, hairy root, features of Ti and Ri plasmids, mechanisms of T-DNA transfer, role of virulence genes, use of Ti and Ri-plasmids as vectors, binary vectors. Vectorless or direct DNA transfer-particle bombardment, electroporation, microinjection, transformation of monoctos. Mechanism of transgene interaction - Transgene stability and gene silencing. Generation and mainteance of transgenic plants.

Applications

Application of plant transformation for productivity and performance – Herbicide resistance phosphoinothricin, glyphosate, atrazine, insect resistance -bt genes, Structure and function of Cry proteins – mechanism of action, critical evaluation of its impact in on insect control. Non-bt like protease inhibitors, alpha amylase inhibitor, virus resistance -coat protein mediated, nucleocapsid gene, disease resistance chitinase, 1-3 beta glucanase, RIP, antifungal proteins, thionins, RS proteins, abiotic stress – drought and salinity, post-harvest losses, long shelf life of fruits and flowers, use of ACC synthase, polygalacturanase, ACC oxidase, male sterile lines, barstar and barnase systems.

UNIT 3

UNIT-IV

UNIT-II

Secondary metabolites & gene markers

Metabolic engineering and industrial products -Plant secondary metabolites. Industrial enzymes, biodegradable plastics, polyhydroxybutyrate, antibodies, edible vaccines. Molecular marker-aided breeding -RFLP maps, linkage analysis, RAPD markers, STS, microsatellites, SCAR (sequence characterized amplified regions), SSCP (single strand conformational polymorphism), AFLP, QTL, map-based cloning, molecular marker assisted selection.

Nitrogen fixation

Nitrogen fixation and biofertilizers -Diazotrophic microorganisms, nitrogen fixation genes. Two component regulatory mechanisms. Transfer of nif genes to non-diazotrophic microorganisms, nod genes structure function and role in nodulation, Hydrogenase -Hydrogen metabolism. Genetic engineering of hydrogenase genes.

Algae

Blue-green algae and Azolla -Identification of elite species and mass production for practical application. Mycorrhizae -importance in agriculture and forestry. Algae as a source of food, feed, single cell protein, biofertilizers; industrial uses of algae. Mass cultivation of commercially valuable marine macroalgae for agar agar, alginates and other products of commerce and their uses. Mass cultivation of microalgae as a source of protein and feed. 6 Hour

UNIT-I

10 Hrs.

10 Hrs.

10 Hrs.

Reference Books *

- 1. Dixon R.A. & Gonzales Plant Cell Culture: A Practical Approach by, IRL Press., 2008
- 2. Plant biotechnology in Agriculture by K. Lindsey and M.G.K. Jones (1990), Prentice hall, New Jersey, 2000
- 3. Plant Biotechnology 1994, Prakash and Perk, Oxford & IBH Publishers Co J Hammond, P
- 4. McGarvey and V Yusibov (Eds): Plant Biotechnology. Springer Verlag, 2000
- 5. Chawla HS: Biotechnology in Crop Improvement. Intl Book Distributing Company, 1998
- 6. Biodegradation and Detoxification of Environmental Pollutants Chakrabarthy AM RJ Henry:
- 7. Practical Application of Plant Molecular Biology. Chapman and Hall 1997
- 8. Plant Tissue Culture: Applications and Limitations by S.S. Bhojwani (1990), Elsevier, Amsterdam. TJ Fu, G Singh and WR Curtis (Eds):
- 9. Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic Press, 1999 PK Gupta:

Course Outcomes**

After completion of the course student will be able to

- 1. Study plant genetic engineering and transformation technology.
- 2. Study Application of plant transformation for productivity and performance
- 3. Study Metabolic engineering and industrial products.
- Study nitrogen fixation and Identification of elite species and mass production for practical application of algae.
- 5. Analyse the growth and cultivation of Blue green Algae.
- 6. Identify various methods of plant transgenics

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	Programme Specific Outcomes										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1
CO 2	2	2	2	3	2	-	-	-	-	-	-	-	3	1	-
CO 3	3	2	2	-	2	-	-	-	-	-	-	1	3	1	-
CO 4	3	2	3	-	2	-	-	-	-	-	-	1	3	1	1
CO 5	2	2	2	-	2	-	-	-	-	-	-	1	3	1	-
CO 6	2	2	2	3	2	-	-	-	-	-	-	1	1	1	-

UBT627E		Credit	Credits: 03							
L:T:P – 3:0:0	TISSUE ENGINEERING	CIE Mar	Marks: 50							
Total Hours/Week: 03		SEE Marks: 50								
UNIT-I 10 Hrs.										
Introduction to tissue engineering, Cell and Tissue Biology										
Basic definition of tissue engin biology and biochemistry. Tiss Introduction to cell adhesion	Basic definition of tissue engineering; current scope of development; use in therapeutics. Introduction to cell – biology and biochemistry. Tissuedevelopment and organization. Stem cells (embryonic), Stem cells (adult).									
Measurement of Cell Adhesion, Effect of Biomaterial on Physiological Behavior. Introduction to cell migration,										
viability, cell-fateprocesses, cell motility, cell function.										
	UNIT–II		10 Hrs.							

Extracellular Matrix

Introduction, ECM and Functional Integration of Implanted Materials, Basement Membranes and Focal Adhesions, Focal Adhesions as Signaling Complexes, ECM and Skeletal Tissues,Sources of ECM for Tissue Engineering Applications, Properties of ECM, Mining the ECM for Functional Motifs, Summary of Functions of ECM Molecules, Polymeric Materials and their Surface Modification,Formation of Gradient Structures.

UNIT 3

UNIT-IV

Introduction to synthetic polymers, Biodegradable materials vspermanent materials, Natural biopolymers and hydrogels, Mechanical properties of biomaterials, Surface modification and characterization of polymers, Immune response to biomaterials, In vitro assessment/biocompatibility/protein adsorption. Polymeric scaffolds for tissue engineering applications.Drug delivery, Mechanisms of Drug Delivery, Protein-Drug Properties, Drug Delivery in Tissue Engineering.

10 Hrs.

10 Hrs.

Tissue Engineering Bioreactors - Design and Fabrication

Introduction, Most common Bioreactors inTissue Engineering, Cell Seeding in Bioreactors, Bioreactor Applications in Functional Tissues, DesignConsiderations, Challenges in Bioreactor\ Technologies.

Clinical & Regulatory Aspects of Engineered Tissues

Tissue Engineering of Skin, Bone Tissue Engineering, Cartilage Tissue Engineering, Neuronal, Tissue Engineering, Cardiovascular TissueEngineering, Musculoskeletal Tissue Engineering, (tendon/ligament/muscle).

Reference Books *

- 1. Channarayappa, Cell Biology, Universities Press, kindle Edition, 2010.
- 2. Robert Lanza Robert Langer Joseph Vacanti Anthony Atala Principles of Tissue Engineering Academic Press 5th Edition 2020.
- 3. Patrick CW, Mikos AG, McIntire LV, Frontiers in Tissue Engineering, Pergamon Press, 1st Edition, 1998.
- 4. Bernhard O Palsson, Sangeeta N Bhatia, Tissue Engineering, Pearson Prentice Hall.1St Edition 2003.

Course Outcomes**

After completion of the course student will be able to

- 1. Identify and differentiate between various stages of tissue development & stem cells.
- 2. Differentiate between various stages of tissue development & stem cells.
- 3. Analyze the mechanism and organization of ECM and its functions.
- 4. Apply the knowledge of drug delivery mechanism in therapeutics.
- 5. To strengthen the concept of protein drug interactions.
- 6. Integrate the knowledge of clinical and regulatory aspects on different engineered tissues in medical human tissue products and pharmaceutical sector

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	Programme Specific Outcomes										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1
CO 2	2	2	2	3	2	-	-	-	-	-	-	-	3	1	-
CO 3	3	2	2	-	2	-	-	-	-	-	-	1	3	1	-
CO 4	3	2	3	-	2	-	-	-	-	-	-	1	3	1	1
CO 5	2	2	2	-	2	-	-	-	-	-	-	1	3	1	-
CO 6	2	2	2	3	2	-	-	-	-	-	-	1	1	1	-

UBT624E		Credits: 03	
L:T:P – 3:0:0	ANIMAL BT	CIE Marks: 50	
Total Hours/Week: 03		SEE Marks: 50	

UNIT-I

UNIT-II

10 Hrs.

10 Hrs.

Cell lines

Primary culture – Mechanical and enzymatic mode of desegregation, establishment of primary culture. Subculture -passage number, split ratio, seeding efficiency, criteria for subculture. Cell lines -definite and continuous cell lines, characterization, authentication, maintenance and preservation of cell lines. Contamination -bacterial, viral, fungal and mycoplasma contaminations, detection and control, cell transformation – normal vs. transformed cells, growth

Cell culture

Scale-up of animal cell culture – Factors to be considered. Scale-up of suspension cultures Batch reactor, continuous culture, perfusion systems. Scale-up of monolayer cultures – roller bottles, Nunc cell factory, microcarrier cultures, organotypic culture, matrices, factors affecting culture and perspectives.

Invitro fertilization & cloning

Conventional methods of animal improvement, predominantly selective breeding and crossbreeding. Embryo biotechniques for augumentation of reproductive efficiency and faster multiplication of superior germ plasm. Super ovulation Oestrus synchronization. Embryo collection, evaluation and transfer. Invitro maturation of oocytes. Invitro fertilisation and embryo culture. Embryo preservation. Micro manipulation and cloning. Artificial insemination, preparation of foster mother, surgical and non-surgical methods of embryo transfer, donor and recipient aftercare. Cloning -concept of nuclear transfer, nuclear reprogramming and creation of Dolly. Stem cells -embryonic and adult stem cells, plasticity and concept of regenerative medicine.

UNIT 3	10 Hrs.						
Human genome							
Human genome complexicity of the genome, outlines of human genome project, human d	isease genes.						
Molecular biological techniques for rapid diagnosis of genetic diseases. Chemical carcinogenesis,	transfection,						
oncogenes and antioncogenes. Cryo preservation and transport of animal germ plasm (i.e. seme	en, ovum and						
mbryos). Genetherapy -ex vivo and in vivo gene therapy methods, applications.							
Transgenics							
Transgenic animals -retroviral, microinjection, and engineered embryonic stem cell method of	transgenesis.						
Application of transgenic animals -biopharming, disease models, functional knockouts.							
UNIT–IV	10 Hrs.						
Other applications							
Application of animal cell culture -Vaccine production, specialized cell types. Concepts of tissue	engineering -						
skin, liver, kidney, bladder and heart. Principles and species suitable for aquaculture (Indian ma	jor carps and						

skin, liver, kidney, bladder and heart. Principles and species suitable for aquaculture (Indian major carps and prawns). Genetic status of culture stocks. Chromosome manipulations -Production of all male and sterile populations, Hypophysation in fishes and prawns. Pearl culture -pearl producing mollusks, rearing of oysters, nucleation for pearl formation and harvesting of pearls. Probiotics and their significance in aquaculture. Molecular tools for the identification of diseases in aquatic species.

Reference Books *

- Ian Fredhney. Culture of Animal Cells, (3rd Edn) R Wiley-Liss Animal Cell Biotechnology, Spier, RE and Griffith, JB Academic Press, London 1990
- 2. Animal Biotechnology by Murray Moo-Young (1989), Pergamon Press, 2000
- 3. Oxford Animal Cell Technology, Principles and practices, 1987, Butter, M Oxford press
- 4. Molecular Biotechnology by Primrose.
- 5. Methods in Cell Biology, Vol. 57, Animal Cell Culture Methods Ed. JP Mather and D Bames. Academic Press Fish and Fisheries India VG Jhingram
- 6. Living resources for Biotechnology, Animal cells by A. Doyle, R. Hay and B.E. Kirsop (1990), cambridge University Press, cambridge.
- 7. Animal Cell Culture Practical Approach, Ed. John RW. Masters, Oxford Animal
- 8. Cell Culture Techniques Ed Martin Clynes, Springer Cell Culture Lab Fax. Eds. M
- 9. Butler & MDawson, Bios Scientific Publications Ltd. Oxford

Course Outcomes**

After completion of the course student will be able to

- 1. Study cell lines and cell culture
- 2. Study Invitro fertilization & cloning.
- 3. Study human genome and Transgenic animals
- 4. Know Application of animal cell culture
- 5. Understand transgenic science
- 6. Understand and analyse cell culture applications.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	Programme Specific Outcomes										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1
CO 2	2	2	2	3	-	-	-	-	-	-	2	-	3	1	2
CO 3	3	2	2	-	-	-	-	-	-	-	2	1	3	1	-
CO 4	3	2	3	-	-	-	-	-	-	-	2	1	3	1	2
CO 5	2	2	2	-	-	-	-	-	-	-	-	1	3	1	1
CO 6	2	2	2	3	-	-	-	-	-	-	-	1	1	1	1

UBT626E		Credits: 03	
L:T:P – 3:0:0	PERL PROGRAMMING	CIE Marks: 50	
Total Hours/Week: 03		SEE Marks: 50	

UNIT-I

10 Hrs.

Introduction

An overview of Perl: Getting started, interpreted vs compiled source code, documentation in perl, statement blocks, ASCII and Unicode, Escape sequences, whitespaces, numerical data type, strings in perl, alternative delimiters, conversion between numbers and strings, Arithmetical operators, bitwise operators, Boolean operators, string operators, string comparison, operator precedence, variables, modifying a variable, autoincrement and autodecrement operators, multiple assignments, scoping, special variables, regular expression variables, input/ output variables, filehandle / format variables, error variables and system variables variable interpolation.

Lists, Arrays and Hashes

Introduction to lists, simple lists, complex lists, accessing list values, list slices, ranges, combining ranges and slices, arrays, assigning arrays, scalar vs list context, adding elements to an array, accessing single and multiple elements from an array, running through arrays, array functions (pop, push, shift, unshift, and sort, Introduction to Hashes, creating a hash, working with hash values, adding, changing and taking values from a hash, accessing multiple values.

UNIT-II

UNIT 3

10 Hrs.

10 Hrs.

Loops and Decisions

Introduction, Changing Array Size, Interacting Over an Array by Reference, Extracting Unique Elements from a List, Computing Union, Intersection, or Difference of Unique Lists, Appending One Array to Another, Reversing an Array, Processing Multiple Elements of an Array, Finding All Elements in an Array Matching Certain Criteria, Sorting an Array Numerically

Regular Expression

Introduction to regular expressions, patterns, interpolation, escaping special characters, anchors, character classes, word boundaries, posix and Unicode classes, detecting repeating words, well defined repetition, back reference variables, match operator, substitution operator and transliteration operator, binding operators, meta characters, changing delimiters, modifiers, usage of split and join keywords, inline comments and modifiers, grouping and alternation, grouping with back references.

Files and References

Introduction to Filehandles, STDIN, STDOUT, STDERR file handles, reading lines, creating filters, line separator, reading paragraphs, reading entire files, writing to files, writing on a file handle, accessing filehandle, writing binary data, selecting a filehandle, buffering, file permissions, opening pipes, piping in, piping out, file tests, reading directories and globbing, introduction to references, lifecycle of a reference, anonymous reference, dereferencing, reference modification, array and hash referencing, reference counting and destruction.

Subroutines and Modules

Introduction to subroutines, difference between subroutines and modules, defining subroutines, order of declaration, subroutines for calculations, return values, caching, context, subroutine prototypes, scope, global variables, lexical variables, runtime scope, aliases, passing references, arrays, hashes and filehandles to a subroutine, modules, usage of keywords do, require and use, changing @INC, package hierarchies, exporters, standard modules in perl.

UNIT-IV 10 Hrs. Running and Debugging Perl

Examining syntax errors, runaway strings, brackets around conditions, missing semicolons, braces, commas

and barewords. Diagnostic modules, use warnings, scope of warnings, use strict, strict on variables, references, subroutines, use diagnostics, perl command line switches, usage of—e, -n, -p, -c, -I, -M, -s, -I, @INC, -a, -F and —T switches, Debugging techniques, usage of print, comments, context, scope and precedence in debugging, Defensive programming.

Bioperl

Overview, Bioperl Objects, Brief descriptions (Seq, PrimarySeq, LocatableSeq, RelSegment, LiveSeq, LargeSeq, RichSeq, SeqWithQuality, SeqI), Location objects, Interface objects and implementation objects, Representing large sequences (LargeSeq), Representing changing sequences (LiveSeq), Using Bioperl: Accessing sequence data from local and remote databases, Accessing remote databases (Bio::DB::GenBank, etc), Indexing and accessing local databases Bio::Index::*, bp_index.pl, bp_fetch.pl, Bio::DB::*), Transforming sequence files (SeqIO), Transforming alignment files (AlignIO);

Reference Books *

- 1. Harshawardhan P Bal, Perl Programming for Bioinformatics, Tata McGraw Hill, 2003.
- 2. James Tisdall, Mastering Perl for Bioinformatics, O'Reilly, 1St Edition, 2003.
- 3. D. Curtis Jamison, Perl Programming for Bioinformatics & Biologists, John Wiley & Sons, INC., 2004
- 4. Michael Moorhouse, Paul Barry, Bioinformatics Biocomputing and Perl, Wiley, 1st Edition 2007.

Course Outcomes**

After completion of the course student will be able to

- 1. Study the over view of perl
- 2. Study about loops and decisions.
- 3. Study of regular expression paterns.
- 4. Study of files and references.
- 5. Understand the subroutines and modules.
- 6. Understand the concept of running and debugging perl.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action wor	d and should be assessable and quantifiable
---	---

Course Outcomes				Pro	Programme Specific Outcomes										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1
CO 2	2	2	2	3	-	-	-	-	-	-	2	-	3	1	2
CO 3	3	2	2	-	-	-	-	-	-	-	2	1	3	1	-
CO 4	3	2	3	-	-	-	-	-	-	-	2	1	3	1	2
CO 5	2	2	2	-	-	-	-	-	-	-	-	1	3	1	1
CO 6	2	2	2	3	-	-	-	-	-	-	-	1	1	1	1

L:T:P – 3:0:0	TRANSPORT PHENOMENA				
Total Hours/Meek. 02		CIE Marks: 50			
		SEE Ma	rks: 50		
			10 11.0		
Morrowstum Transfer and Our			10 Hrs.		
Fluid Statics General molecul	ar transport equations for momentum heat and	mass transfor	Viscosity of		
fluids. Overall balances: mas	s balance/continuity equation, energy balance.	momentum b	alance, shell		
momentum balance and veloci in pipes.	ity distribution in laminar flow, design equation for	laminar and t	urbulent flow		
Momentum transfer – Principle fluids, Differential equations of	es and Applications: Flow past immersed objects, pa continuity, momentum transfer (motion).	acked beds, No	n-Newtonian		
	UNIT–II		10 Hrs.		
Mechanisms of heat transfer, c Forced convection - heat tran heat exchangers. Unsteady State Heat Transfer: resistance.	conduction – through solids in series, steady state co sfer inside pipes, natural convection heat transfer Derivation of basic equation, simplified case for syst	nduction and s , boiling and c cems with negli	hape factors, ondensation, gible internal		
	UNIT 3		10 Hrs.		
Mass Transfer: Mass transfer and diffusion, Separation Processes - Evapora	molecular diffusion in gases, liquids and solids. ition, Drying, Humidification, and Absorption.	Mass transfer	coefficients.		
Sonaration Processos:	GNIT-IV		101115.		
Distillation, Adsorption, Ion Exc	change, Leaching, Crystallization, Membrane process	ses.			
Reference Books *					
1 Transport Processes and	Senaration Process Principles – C. I. Geankoplis. 4th	Edition			
2. Momentum. Heat and M	ass Transfer – Bennett and Myers				
3. Welty, Wicks and Wilson	Fundamentals of momentum, heat and mass transfu	er.2000.			
4. Sawhney Gs Fundamenta	ls of Fluid Mechanics IK Publishers .2008				
Course Outcomes**					
After completion of the course	e student will be able to				
1. Define the units, dimen	sions and dimensional analysis				
2. Analyze the dimensiona	I analysis methods				
3. Define the fluid, proper	ty and types of fluid				
4. Apply the Hydrostatic a	nd Bernoulli's theorem				
5. Apply the applications c	of Bernoulli's theorem in venture meter, Orifice met	er, etc			
6. Evaluate the working of	size reduction equipments and mixing equipments				

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	Programme Specific Outcomes										
Outcomes	tcomes 1 2 3 4 5 6 7 8 9 10 11 12								12	1	2	3			
CO 1	3	2	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 2	3	3	3	-	-	-	1	-	-	-	-	-	3	1	-
CO 3	2	3	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 4	3	2	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 5	2	3	3	-	-	-	1	-	-	-	-	-	2	1	-
CO 6	3	2	2	-	-	-	1	-	-	-	-	-	2	1	-

UBT622E	
L:T:P – 3:0:0	GENOMICS AND PROTEOMICS
Total Hours/Week: 03	

UNIT-I

10 Hrs.

10 Hrs.

Introduction

Genes and Proteins, Polymorphisms – types of polymorphism, commercializing the Genome - Revenue opportunities: a) genome sequences and database subscriptions, b) prediction of new genes and their function by databases, c) potential revenue in the area diagnostic and biomedical applications, d) biosimilars market and implications.

Sequencing & genome projects

Early sequencing efforts, Methods of preparing genomic DNA for sequencing, DNA sequence analysis methods, Sanger Dideoxy method, Fluorescence method, shotgun approach. Next generation sequencing Genome projects on *E.coli*, Arabidopsis and rice; Human genome project.

UNIT–II	10 Hrs.
Genomics	

Gene variation and Single Nucleotide Polymorphisms (SNPs), Expressed sequenced tags (ESTs), genotyping tools -DNA Chips, comparative genomics. Functional genomic studies with model systems such as Drosophila, Yeast or C. elegans.

Genome management in eukaryotes

Cell differentiation and gene regulation. Inheritance pattern in eukaryotes, Mutations, organization of eukaryotic genome within the nucleus, translation and post-translational modification in eukaryotes. Interference RNA, RNA silencing, SiRNA: Applications in Functional genomics, medicine and Gene Knockdown. Metagenomics- definition & concept.

UNIT 3

Functional genomics

Hargobhind Khorana discovery the first artificial gene, C-Value and paradox of genomes, Repetitive and coding sequences, Genetic and physical maps, chromosome walking. Molecular markers – RFLP, RAPD and AFLP, Microsatellites and telomerase as a molecular markers. Methods of molecular mapping, Marker assisted selection, map based cloning, T-DNA tagging, Transposon tagging. Bioinformatics analysis- clustering methods. Approaches to physical mapping, FISH – DNA amplification markers.

UNIT–IV	10 Hrs.
Proteomics	

Introduction to proteins, Methods of protein isolation, purification, quantification, Large scale preparation of proteins, use of peptides in biology, Proteomics databases and proteins as drugs.

Proteome analysis

Mass-spec based analysis of protein expression and post-translational modifications. "Protein Chip" - interactions and detection techniques. Methods of measurement of mRNA expression, DNA array hybridization Non-DNA array hybridization, two dimensional PAGE for proteome analysis, Applications of proteome analysis to drug development and toxicology. Crisper-cas.

Reference Books *

- 1. Introduction to Genomics Arthur M Lesk, Oxford University Press, 2007.
- 2. Plant Genome Analysis Peter M Gresshoff, CRC Press.
- 3. Genetic Analysis Principles, Scope and Objectives by JRS Finchman, Blackwell Science, 1994.
- 4. A M Campbell & L J Heyer Discovering Genomics, Proteomics & Bioinformatics–,Pearson Education, 2007.
- 5. Albala J S & I Humprey-Smith Protein Arrays, Biochips and Proteomics–CRC Press, 2003.
- 6. 3.Sabesan, Genomics & Proteomics , Ane Books, 2007.
- 7. Pennington S. R. and M J Dunn Proteomics –, 2004.
- 8. Richard J Simpson Purifying Proteins for Proteomics, IK International, 2004.
- 9. Richar.d J Simpson Proteins and Proteomics –, IK International, 2003.

Course Outcomes**

After completion of the course student will be able to

- 1. Ability to describe how genomic DNA contains long stretches non-coding regions.
- 2. Ability to describe how a single gene can give rise to multiple proteins.
- 3. Ability to harness the emerging genomic, transcriptomics and proteomics.
- 4. Ability to understand bioinformatics information to build novel paradigms of biological importance.
- 5. Ability to understand how modern genomics tools are useful in functional genomics.
- 6. Ability to understand the importance of proteomics in modern biology.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	ograr	nme	Outco	omes					Programme Specific Outcomes			
Outcomes	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3				
CO 1	3	3	2	-	-	2	2	-	-	-	-	1	-	2	3	
CO 2	3	3	1	-	-	2		-	-	-	-	2	1	-	3	
CO 3	3	2	2	1	2	-		-	-	-	-	1	1	2	2	
CO 4	2	2	2	2	2	2	2	2	-	-	-	1	1	2	2	
CO 5	2	1	2	-	1	-	2	-	-	-	-	1	1	2	2	
CO 6	3	1	2	2	2	1	-	-	-	-	-	1	1	2	2	

LT:P - 3:0:0 BIOFUELS TECHNOLOGY CIE Marks: 50 Total Hours/Week: 03 SEE Marks: 50 Biochemistry of biofuels and energy resources Biosch principal of light energy conversion to chemical energy & carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels Biofuels Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. Biofuel feed stocks UNIT-II 10 Hrs. Biofuel feed stocks. Starch feed stocks. sugar-beet; cellulosic feed stocks - residues, agricultural residues, Agricultural processing by-products, declated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels UNIT-II 12 Hrs. Technologies for biofuels UNIT-III 12 Hrs. Technologies for biofuels Intervention of biodels. Second generation. First generation biofuels, standardization, properties and emissions of biodiesel. Bioduction, Innovations in I2 G technology. Thermochemical platforms - biodiesel. Bioduction, AD technology and innovations in I2 G technology. Thermochemical platforms - b	UBT625E		Credits	: 03									
Total Hours/Week: 03 SEE Marks: 50 INTERCISE Bioice mistry of bioluels and energy resources Basic principle of light energy conversion to chemical energy & carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cell-ulosic feed stocks - forest residues, agricultural processing by-products, dedicated energy corpos, municipal solid waste and paper waste. Lipid feed stocks : Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Pryes of biofuels INIT-III 12 Hrs. Technologies for biofuels WINT-III INIT-III 12 Historical background. Biochemical platform – bioethanol production, standardization, emissions an oproperties of bioethanol. Innovations in Biomethanation process. Biohydrogen processing and usc. Converting biolidesel productions, standardization, properties and emissions of biodiesel. Bromethanation and usc. </td <td>L:T:P – 3:0:0</td> <td>BIOFUELS TECHNOLOGY</td> <td>ks: 50</td>	L:T:P – 3:0:0	BIOFUELS TECHNOLOGY	ks: 50										
UNIT-I 10 Hrs. Biochemistry of biofuels and energy resources Basic principle of light energy conversion to chemical energy & carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. UNIT-I 10 Hrs. Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks - Storest feed stocks. Types of biofuels Ypes of biofuels Next generation bied stocks. Environmental impacts of feed stocks. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels UNIT-III 12 Hrs. Technologies for biofuels Divertion process. Bio/vargeen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. B	Total Hours/Week: 03		[.] ks: 50										
UNIT-1 10 Hrs. Biochemistry of biofuels and energy resources Biochemistry of biofuels and energy resources Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. 10 Hrs. Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbet; cellulosic feed stock - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks - forest residues, agricultural residues, biolachols, bioethers, biogas syngas, solid biofuels. Second generation biofuels - Second generation biofuels - Second generation biofuels - Second generation biofuels - UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform - bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, novations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation-AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. I0 Hrs. <th></th> <th></th> <th></th> <th></th>													
Biochemistry of biofuels and energy resources Basic principle of light energy conversion to chemical energy & carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. UIT-II		UNIT-I		10 Hrs.									
Basic principle of light energy conversion to chemical energy & carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuel Ife cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. UNIT-II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Biochemistry of biofuels and	energy resources											
conversion of sugars to alcohols. Renewable and non-renewable resources. Biofuels Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. UNIT-II Biofuel feed stocks Starch feed stocks Starch feed stocks. Starch feed stocks. Course residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels UNIT-III 12 Hrs. Technologies for biofuels UNIT-III 12 Hrs. Biofuels bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel. Biomethanation, AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodiesel, Issues with biofuels production & use. Impact of biofuel in global climate change & food production, 1st versus 2nd generation biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmen	Basic principle of light energ	y conversion to chemical energy & carbon fixation	n. Biochemistry	involved in									
Horouses Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use. INIT-II IDINE Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Disleed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid bio ⁻ UE. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, AD technology and innovations in Biomethanation process. Biohydrogen processing and use. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. Ist versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Evels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. B Biofuels (Series - Energy For The Future And Global Warming) B Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge	conversion of sugars to alcoho	bls. Renewable and non-renewable resources.											
Indication of the set	Biotuels	inition advantages and disadvantages. Piefuel life s	velo Piomacca	s an onormu									
Control to a control to an experimentation of biofuel production and use. UNIT-II Biofuel feed stocks Starch feed stocks cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. VINT-II 12 Hrs. Technologies for biofuels UNIT-III Technologies for biofuels UNIT-III Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 26 technology. Thermochemical platforms - biodlesel production, Innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. Ist versus 2nd generation biofuels. Reference Books * 1. Environmental B	core and its different mode of	f utilization. Conventional fuels and their environme	ntal impacts N	Andern fuels									
UNIT-II 10 Hrs. Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels 12 Hrs. Technologies for biofuels UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. Biofuels in perspective UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of production. Its versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Biofuels production. Market barriers of biofuels. Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biofuels. Integrated refining concepts with reference to ethanol production. Market barriers of b	and their environmental impa	cts. Biofuel energy content. World scenario of biofu	el production a	nd use.									
Biofuel feed stocks Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks: -Oliseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofues. Second generation biofuels - vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Technologies for biofuels UNIT–III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. Biofuels in perspective UNIT–IV 10 Hrs. Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel inglobal climate change & food production. 1x versus 2nd generation biofuels. Stardegies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Biofuels in perspective Interverse and anzies of biofuels. Integrated refining concepts wit	UNIT–II 10 Hrs.												
Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels UNIT-III Itechnologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV Io Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Efference Books * I. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. S. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. Biofuels by Ayhan Demirbas publ. Springer Biofuels (Series - Energy For The Future And Global Warming) S. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C. Ratledge & A. Sasson, Cambridge Univ. Press, Cambridge. Course Outcomes** I. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	Biofuel feed stocks												
stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels UNIT-III Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation- AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food producting biodiesel, Issues with biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes**	Starch feed stocks-cereal grain	ins, tubers & roots; Sugars feed stocks-sugarcane &	& sugarbeet; ce	llulosic feed									
municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid bioFuels. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation- AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Federence Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	stocks - forest residues, agri	icultural residues, Agricultural processing by-produc	ts, dedicated e	nergy crops,									
Animal fats. Next generation feed stocks. Environmental impacts of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid bisuels. Second generation and third generation biofuels UNIT-III Itervinologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation- AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV Itervinologies, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. Ist versus 2nd generation biofuels. Keference Books * I. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. S. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. Biofuels (Series - Energy For The Future And Global Warming) Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. Course Outcomes** I. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	municipal solid waste and pa	per waste. Lipid feed stocks :-Oilseed crops with e	examples, Algae	e, Waste oil,									
Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation-AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007.	Animal fats. Next generation	feed stocks. Environmental impacts of feed stocks.											
First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Bio	Types of biofuels												
generation and third generation biofuels UNIT-III 12 Hrs. Technologies for biofuels Itstorical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Bio	First generation biofuels-vege	etable oil biodisel, bioalcohols, bioethers, biogas syn	gas, solid biofu	iels. Second									
UNIT-III 12 Hrs. Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, AD technology and innovations in Biomethanation process. Biohydrogen processing and uss. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. Ist versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to Ability to understand the basic principle	generation and third generation	on biofuels											
Technologies for biofuels Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Innovations in 2G technology. Thermochemical platforms - biodiesel production, Innovations in Biodiesel productions, standardization, properties and emissions of biodiesel. Biomethanation-AD technology and innovations in Biomethanation process. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Microbial fuel cells. Blending of biofuels. UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producting biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology by Pradipta Kumar Mahopatra, 2007. Curree Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to		UNIT-III		12 Hrs.									
UNIT-IV 10 Hrs. Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of production biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1 Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	properties of bioethanol. Inn Innovations in Biodiesel produ AD technology and innovation solid wastes to pipeline gas.	ovations in 2G technology. Thermochemical platfor ovations, standardization, properties and emissions of ons in Biomethanation process. Biohydrogen proce Microbial fuel cells. Blending of biofuels.	rms - biodiesel biodiesel. Biom ssing and uses	production, nethanation- . Converting									
Biofuels in perspective Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. Ist versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to		UNIT-IV		10 Hrs.									
Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodiesel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels. Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	Biofuels in perspective												
Reference Books * 1. Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. 2. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. 3. Biofuels by Ayhan Demirbas publ. Springer 4. Biofuels (Series - Energy For The Future And Global Warming) 5. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. 6. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	Integrated refining concepts biodiesel, Issues with biofuel 1st versus 2nd generation b production. Market barriers o	with reference to ethanol production. Econom production & use. Impact of biofuel in global climate iofuels. Strategies for new vehicle technologies. C f biofuels.	ic feasibility o change & food urrent research	f producing production. n on biofuel									
 Environmental Biotechnology by Foster C. F., John ware D.A., Ellis Horwood Limited, 1987. Fuels from Waste by Larry Anderson and David A Tillman. Academic Press, 1977. Biofuels by Ayhan Demirbas publ. Springer Biofuels (Series - Energy For The Future And Global Warming) Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007. Course Outcomes** After completion of the course student will be able to Ability to understand the basic principle involved in bioconversion process in energy and to 		Reference Books *											
Course Outcomes** 1. After completion of the course student will be able to 2. Ability to understand the basic principle involved in bioconversion process in energy and to	 Environmental Biotech Fuels from Waste by La Biofuels by Ayhan Dem Biofuels (Series - Energ Biotechnology, Econo Cambridge Univ. Press, Environmental Biotech 	nology by Foster C. F., John ware D.A., Ellis Horwood nry Anderson and David A Tillman. Academic Press, nirbas publ. Springer y For The Future And Global Warming) omic & Social Aspects: E.J. Dasilva, C Cambridge. nology by Pradipta Kumar Mahopatra, 2007.	Limited, 1987. 1977. Ratledge &	A Sasson,									
 After completion of the course student will be able to Ability to understand the basic principle involved in bioconversion process in energy and to 		Course Outcomes**											
2. Ability to understand the basic principle involved in bioconversion process in energy and to	1. After completion of the	e course student will be able to											
	2. Ability to understand	the basic principle involved in bioconversion p	process in ene	ergy and to									

differentiate the conventional fuels with biofuels .

- 3. Able to diagnose the types of feed stocks used for biofuels.
- 4. Able to produce the biofuels (biodiesel, bioalcohol biogas and biohydrogen) using current technologies and innovations involved
- 5. Able to understand and recall current issues related with production and use of biofuels, Research opportunities, economic feasibility of the biofuels

Course				Pro	ograr	nme	Outco	omes					Programme Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	2	-	-	2		1	-	-	-	-	1	3	2	-	
CO 2	3	3	-	3			2	-	-	-	-	1	2	-	-	
CO 3	3	3	-	3	3		2	-	-	-	-	3	-	2	-	
CO 4	3	3	-	3			2	-	-	-	-	3	-	1	-	
CO 5	3	3	-	3	3		2	-	-	-	-	3	-	2	-	
CO 6	3	3	-	3			2	-	-	-	-	3	-	1	-	

UBT632N

L:T:P – 3:0:0 Total Hours/Week: 03

	10 Hours
Introduction:	10 110 015
Current Environmental Issues and scope of Environmental science and technology biogeochemic	al role of soil
microorganisms, Bioconcrete, Environment Impact Assessment	
Bioaccumulation of toxicants	
Characteristics of Xenobiotics, Relationship of Bioaccumulation with Chemical Structure, Ecop	physiology of
Bioaccumulation Process of toxicants uptake, Factors affecting bioaccumulation, meas	surement of
bioaccumulation	
Sustainable future: Green building concept, Carbon foot print, crediting, trading and its calcul	ation, water
	10 Hrs
Weste water treatment:	Nasto wator
vasie water treatment.	vasie waler
Microbial removal of phosphorous and Nitrogen Wastewater treatment of industries like sus	ar factories.
food industries, beverages industries, and distilleries.	
Solid waste management	
Basic aspects, general composition of municipal solid wastes, aerobic treatment, anaerobic treat	tment biogas
generation Solid waste management. Hazardous wastes, Biomedical Wastes E waste manage	ement, MoEF
rules.	
UNIT–III	10 Hrs.
Bioleaching & Biomining: Microbes in Bioleaching- types, methods of bioleaching, Microbial recovery of phosphate, petrole	eum.
Bioremediation:	diation waina
microbes Phytoremediation Biofilms its applications Bio-stimulation of Naturally occurring	anation using
activities Bio-augmentation	
UNIT-IV	10Hrs.
Biofuels:	
Definition, Renewable and nonrenewable resources Advantages and disadvantages of biofuels	Biofuel feed
stocks-sugar starch, cellulose, lipid Types of biofuel- first, second and third generation Technological	ogies for bio-
fuel production-transesterification, gasification 2G technology, Biomethanation, Issues of biofue	el production
and its use. Microbial fuel cells.	
Biodiversity: Value of biodiversity, threats to biodiversity approaches of biodiversity conservation	n.
Reference Books *	
4. Deadlete K. Makanata 2000 Tel Deal af Earline seatal Distance and a like history	
1. Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers	
 Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers R C Dubey and D K Maheshwari,2013 Text book of Microbiology, 	
 Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers R C Dubey and D K Maheshwari,2013 Text book of Microbiology, M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press 	
 Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers R C Dubey and D K Maheshwari,2013 Text book of Microbiology, M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press EJ Dasilva, C Ratledge & A Sasson, 2003, Biotechnology, Economic & Social Aspects Cambrid 	idge Univ
 Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers R C Dubey and D K Maheshwari,2013 Text book of Microbiology, M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press EJ Dasilva, C Ratledge & A Sasson, 2003, Biotechnology, Economic & Social Aspects Cambri Press. Indu Shekhar Thakur 2012 Environmental Biotechnology Pasic concents and applications. 	idge Univ Second
 Pradipta Kum Manopatra, 2006, Text Book of Environmental Biotechnology, TK Publishers R C Dubey and D K Maheshwari,2013 Text book of Microbiology, M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press EJ Dasilva, C Ratledge & A Sasson, 2003, Biotechnology, Economic & Social Aspects Cambri Press. Indu Shekhar Thakur,2012,Environmental Biotechnology Basic concepts and applications, Edition, 1 K international Publishing House, Pvt. 1td. 	idge Univ Second

Course Outcomes**

- 1. Able to analyse the current environmental issues, scope of environmental Technology and understand the various sustainable future concepts.
- 2. Able to analyse the methods used in treatment of waste water and solid waste.
- 3. Able to understand the concept of bioleaching process and biomining activity
- 4. Able to analyse the types and methods used in cleaning of the environment by bioremediation.
- 5. Able to define the sources of biofuels and produce various biofuels
- 6. Able to analyse the need of conservation of biodiversity

Course				Program Specific Outcomes (PSOs)											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	2	1	-	-	-	-	-	-	-	1	1
CO2	2	3	1	-	1	-	-	-	-	-	-	-	2	2	2
CO3	3	2	-	-	1	-	-	-	-	-	-	-	2	3	2
CO4	2	2	1	-	-	-	1	-	-	-	-	-	2	3	1
CO5	2	1	-	-	-	-	3	-	-	-	-	2	2	2	2
CO6	2	-	1	-	2	-	1	-	-	-	-	2	2	3	2

UBT615L		Credit: 01
L:T:P – 0:0:2	BIOKINETICS & ENZYME TECHNOLOGY LAB	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50
LIST OF EXPER	IMENTS IN BIOKINETICS & ENZYME TECHNOLOGY LA	BORATORY
1. Isolation of alpha-amy	lase from sweet potato or saliva	
2. Maltose calibration cu	rve by DNS method	
3. Determination of activ	ity of Salivary alpha-amylase	
4. Determination of Spec	ific activity of an enzyme	
5. Effect of pH and temp	erature on enzyme activity	
6. Determination of Kine	tics constants (Km & Vmax)	
7. Urea calibration curve		
8. Determine the activity	of enzyme Urease	
9. Effect of inhibitors on	enzyme activity	
10. Immobilization of enzy	me and determination of immobilized enzyme activity	y
11. (Prediction of error pe	rcentage, standard deviation need to be calculated fro	om expt. no 5 and 6)
	Reference Books *	
1. Laboratory manual of Bio 2017.	chemistry by Pattabiraman, 4 th Edition, International	book publishers , India,
2. Sadasivam and Manickam	n, "Biochemical Methods", 2 nd Edition, New age interr	national Publishers, 2017.
	Course Outcomes**	
After completion of the cours	se student will be able to	
1. Understand the prepa	ration of enzymes.	
2. Determine the activity	of enzymes.	
3. Estimate the effect of	external condition on enzyme activity.	

- 4. Evaluate the action of inhibitors on the enzyme activity.
- 5. Analyze the kinetic of enzymes.
- 6. Apply knowledge of immobilization of enzymes

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	3	1	-	2		-	-	-	-	1	3	2	-
CO2	3	3	2	2	-	3	2	-	-	-	-	-	3	1	-
CO3	3	2	-	2	-	2	-	-	-	-	-	-	3	3	-
CO4	2	3	1	1	-	2	4	-	-	-	-	-	3	1	-
CO5	2	3	-	1	-	-	-	-	-	-	-	-	3	2	-
CO6	2	3	3	2		3	2	-	-	-	-	1	3	-	-

UBT614L															Crea	dit: 01	
L:T:P – 0:0:2					UF	STRE	AM F	ROC	ESS	NG L⁄	٩B			C	E Ma	arks: 5	0
Total Hours/Wee	ek: 02													SE	E Ma	arks: 5	0
	LIST	OF E	XPE	RIME	NTS	IN U	PSTR	EAM	PRC	CESS	ING	G LAB	ORATO	DRY			
1. Callus Induction	on Te	chnio	que-	Stoc	k pre	eparat	tion,	Med	ia pr	epara	tio	n.					
2. Explants prep	aratic	n an	id ind	ocula	tion	techr	nique										
3. Development	of su	spen	sion	cultu	ire f	rom c	allus										
4. Animal cell cu	lture	tech	niqu	es													
5. Artificial seed	prod	uctic	on (A	uxilia	ry b	uds)											
6. Production of	seco	ndar	y me	tabo	lite l	oy sha	ke fl	ask s	tudi	es; Co	mp	ariso	n of yie	eld in va	ariou	ıs medi	a
7. Fed batch cult	ure –	Ass	essm	ent o	of yie	eld											
8. Development	of ind	ocula	ı; lag	time	e effe	ect											
9. Study of oper	ationa	al fur	nctio	ns of	the	ferme	entor	-									
10. Production of	Ethar	nol ir	n feri	ment	or –	Study	/ of G	Grow	th, p	roduc	t fo	ormat	ion				
11. Kinetics and e	nd su	bstra	ate u	tiliza	tion												
12. Single Cell Pro	otein (SCP)	pro	ducti	on b	y con	tinuc	ous c	ultu	e.							
						Refe	erend	e Bo	oks	*							
1. Plant Cell Cult	ure: /	A Pra	octica	al Api	oroa	ch by	R.A.	Dixo	n & (Gonza	les	. IRL F	Press.2	nd _{Editi}	ion. 1	1995	
2 Introduction	o nla	nt Ri	otec	hnol	ngvl	by H S	Cha	wla		ford &	2 I P	RH Pul	hlisher	s and F	ditio	n 201	8
2. Culture of An	imal c	مااد_	2rd 1	-ditic	n-B	lan F	rochi		، ی مان/۱۸	201	^ '- ^		onorren	5, 5 L	.urtio	,,, 201	0.
4. Principles of f	erme	ntati	ion T	echn		v bv F	P.F. S	tanb	urv a	and A.	0. . W	hitake	er. But	terwort	h- He	einema	ann:
3 rd Edition 2	016					, .,.			,				.,				,
J Edition, 2	010.					Cour				k *							
						Cour	se O	utco	mes								
After completion of	the c	ours	e stu	dent	will	be al	ole to	כ									
1. Prepare/repro	oduce	the	prot	ocols	tor	the ex	xperi	men	ts								
2. Produce callu	s usin ductr	g pia Vial m	int ti nodia	ssue and	ino	ure te	fort	ques bo f	armo	ntatio	- -	nroco	c c				
4 Operate lab	ferme	nter	anc	l nre	nare	the	ferm	ne n nenta	ation	nroc	ecc Dir F	tos	ss tudv ø	rowth	kinet	tics su	bstrate
utilization an	d pro	duct	form	natio	n					P100			-~~1 8				
5. Record/obser	ve the	e exp	perim	nenta	ıl da	ta anc	l inte	rpre	t the	m in t	the	grapl	n/table	•			
6. Calculate the	result	and	to v	vrite	the	conclu	usion	at tł	ne er	nd of t	he	expe	riment				
														_			
				Pr	ogra	amme	Out	com	es (P	Os)				Pr	ogra	mes (P	citic SOs)
															1001	1163 (17,	JU 31

CO1

CO2

CO3

CO4

CO5

CO6

2

3

3

3

3

3

-

-

-

-

-

-

3

3

3

3

3

3

2

-

3

-

3

-

3 3

3

3

3

1

2

2

2

2

2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3

2

-

-

-

-

1

1

3

3

3

3

-

-

-

-

-

-

2

2

1

2

1

-

-

-

-

-

-

VIII SEMESTER

SI.	Subject	Subject Title		H	ours/Week		E	kaminat Marks	ion
NO.	Coue	Subject fille	Cradita	Looturo	Tutorial	Drestical			Tatal
			Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT805P	Project	15	0	0	15	50	50	100
2	UBT8XXE	Elective-6	3	3	0	0	50	50	100
3	UBT8XXE	Elective-7	3	3	0	0	50	50	100
		Total	21	6	0	15	150	150	300

Elective-6

UBT823E: Chemical plant utilities & safety UBT824E: Metabolic engineering UBT825E: Industrial waste water treatment UBT827E: Pharmaceutical BT

Elective-7

UBT830E: Clinical research

UBT832E: Health diagnostics

UBT833E: Validation & quality control

UBT834E: Product development

Total Hours/Week: 03

UNIT-II

UNIT-III

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

Introduction:

Introduction to pharmaceutical biotechnology, Pharmaceutical Industry. Drug design, development and Economics, Fundamental principles and processes involved in preclinical and clinical development of a chemical or biological entity. Orphan drugs Provisions for and use of unlicensed medicines, Drug abuse and dependence, Prescription and Non-prescription drugs. Regulations & guidelines for pharma ,CDSCO, fda, ichq7, usfdA21 cfr part11.

Drug metabolism:

Evolution of Drug Metabolism as a Science, Phase I Metabolism (microsomal oxidation, hydroxylation, dealkylation) Phase II Metabolism (Drug conjugation pathway). Pharmacodynamics and Pharmacokinetics of drugs.

Toxicology:

Basic concepts in toxicology, the mechanism of toxin action, biotransformation of toxins, their inactivation and removal from the body, Reactive intermediates.

Manufacturing principles and formulations:

Definitions, applications, composition, preparation, physicochemical considerations, Preformulation Testing, Tablets, compressed tablets, tablet granulation, Coatings, Pills, Parental preparations, herbal extracts, Oral liquids, Ointments, short study of current biotech products, herbal medicines. Quality control, storage and stability of biotech products.

Stem cells in health care:

Introduction to Stem Cell Biology, Fate Mapping of Stem Cells, Mesenchymal Stem Cells, Stem Cells and Neurogenesis and its application, Epidermal Stem Cells, Liver Stem Cells, Pancreatic Stem Cells, Stem Cells in the Epithelium of the Small Intestine and Colon. Application of epidermal stem cell in Tissue engineering, Hematopoietic Stem Cells, Classification and clinical manifestations of hematopoietic stem cell disorders. **Drug delivery system:**

Advanced Sustained Release Drug Delivery System, Advanced drug Delivery Systems, Liposomes and Nanoparticles Drug Delivery System, Biodegradable Drug Delivery System, Hydrogel based Drug Delivery System.

Analysis of biologicals & pharmaceuticals:

Vitamins Cold remedies Laxatives Analgesics, NSAIO, External antiseptics, Antacids, Antibiotics, Biologicals, Herbal products. Packaging techniques – Glass containers, plastic containers, film wrapper, bottle seals.

Advanced pharmacology:

Introduction to pharmaceutical chemistry, classification of drugs based on therapeutic actions using suitable examples. Antineoplastic agents, Immunomodulators, Heavy metals and heavy metal antagonists, Therapeutic gases. Free radical biology and antioxidants.

Reference Books *

1. Gary Walsh, (2013), Biopharmaceuticals Biochemistry and Biotechnology (2nd Edition), Wiley Publishers.

UNIT-IV

- 2. Bartram Katzung, (2009), Basic & Clinical Pharmacology (9th Edition), McGraw Hill.
- 3. Leon Lachman, Herbert. Lieberman & Joseph Kanig, Vergese, (1987) The Theory & Practice of

Industrial Pharmacy, (3rd Edition) Publishing House Bombay.

Course Outcomes**

After completion of the course student will be able to

- 1. Apply and classify various biological sources of pharmaceutical products to retrieve the basic concept of pharmacology, drug metabolism .and their importance in biotechnology
- 2. Select and apply the toxicological studies of pharmaceutical products
- 3. Use knowledge of the techniques used in the manufacture of pharmaceutical products and apply in the field of Biopharmaceuticals.
- 4. Ability to discuss the concepts used in production of stem cells and analyse the applications and ethical issues of stem cells in the society.
- 5. Select and apply appropriate techniques advanced techniques in drug delivery system.
- 6. Demonstrate an ability to apply principles various other applications to protect the global community from various dreadful diseases.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	2	2	3	3	1	-	-	-	-	-	3	2	1
CO2	-	3	3	3	3	2	3	-	-	-	-	-	2	2	1
CO3	-	2	3	2	3	1	-	-	1	-	-	-	3	2	-
CO4	-	2	3	2	3	1	-	-	-	-	-	-	2	2	-
CO5	-	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO6	-	3	3	3	3	2	2	-	-	-	-	-	2	2	3

UBT833E	
L:T:P – 3:0:0	

Total Hours/Week: 03

UNIT-I

6 Hours

Introduction

Validation and Regulatory Affairs in Bio (Pharmaceutical) Manufacturing: An Introduction to FDA Operations &Industry Compliance Regulations, The Fundamentals of Regulatory Compliance with respect to Good Clinical Practice (GCP), Good Manufacturing Practice (GMP) & Good Laboratory Practice (GLP). An Introduction to the Basic Concepts of Process Validation & Qualification (IQ, OQ & PQ) Procedures, A Review of Prospective, Concurrent, Retrospective Validation & Revalidation . Validation of Water, Active Pharmaceutical Ingredients (APIs) & Aseptic Processes. Validation of Non- Sterile Processes (used in the manufacture of Solids, Liquids, & Semisolid Dosage Forms). FDA and ICH guidelines.

					UNIT–II							7 Hrs.
Medical	Device,	In-Vitro	Diagnostics	&	Packaging	Validation	lssues,	Validation	of	Analyti	ical	Methods,
Compute	rized & A	Automate	ed Systems ur	۱de	r 21 CFR Pa	rt 11.						

Standards

Introduction, ISO 9000 Series of Standards, Management Responsibility, Quality System, Contract Review, Design Control, Document and Data Control, Preservation and Delivery, Control of Quality Records, Internal Quality Audits, Training, Servicing, Statistical Techniques, ISO-9001-2000, Scope, Normative Reference, Terms and Definitions, Quality Management, System, Documents Requirements, Management's Responsibility, Resource Management, Infrastructure, Product Realization, Measurement, Analysis and Improvement, ISO-14001 - Environmental Management Systems.

	UNIT–III	6Hrs.
Implementation		10 Hours

The Influence of Good Automated Manufacturing Practice (GAMP); The FDA's Approach to GMP Inspections of Pharmaceutical Companies.

Quality System, Contract Review, Design Control, Document and Data Control, Purchasing,Control of Customer Supplied Product, Product Identification and Traceability, Process Control, Inspection and Testing, Final Inspection and Testing, Control of Inspection, Measuring and Test Equipment, Inspection and Test Status, Control of Nonconforming Product, Corrective and Preventive Action, Handling, Storage, Packaging, Preservation and Delivery, Control of Quality Records, Internal Quality Audits, Training, Servicing, Statistical Techniques.

Quality Objectives, Quality Planning, Quality Control, Quality Assurance, Quality Improvement

UNIT–IV	7Hrs.

Quality

Terminology Relating to Quality, Quality Requirement, Customer Satisfaction, Capability; Terms Relating to Management, Management System, Quality Management System, Quality Policy, Continual Improvement, Effectiveness, Efficiency; Relating to Process and Product, Process, Product, Procedure; Terms relating to Characteristics, Quality Characteristics; Terms Relating to Conformity, Non-Conformity, Defect, Preventive Action, Corrective Action, Correction, Rework, Regrade, Repair, Scrap, Concession, Deviation Permit, Release; Terms Relating to Documentation, Information, Document, Specification, Quality Manual, Quality Plan, Record; Terms Relating of Examination, Objective Evidence, Inspection, Test. Metrological Confirmation.

Reference Books *

- 1. Pharmaceutical Process Validation, 3rd Edition, Edited by Robert Nash and Alfred Wachter, Marcel Dekker, 2003
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control From

Manufacturer to Consumer, Sidney J. Willig, Marcel Dekker, 5th Ed., 2000.

- Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed., 1998.
- 4. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance, 2017
- 5. Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider, Saint Lucie, 2017
- 6. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press, 1998.
- 7. Commissioning and Qualification, ISPE Pharmaceutical Engineering Baseline Guides Series, 2001

Course Outcomes**

- 1. Ability to comprehend the validation techniques, process, concepts.
- 2. Ability to analyse the good practices in lab, clinical and manufacturing practices
- 3. Capable of understanding the ISO standards and environmental management systems
- 4. Ability to analyse the analytical methods of validation, issues and automated system and standards
- 5. Ability to discuss the quality control measures used in industries
- 6. Ability to analyse the Quality Management System

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	2	3	1	-	-	-	-	-	1	3
CO2	2	-	-	2	-	3	3	3	-	-	-	-	2	2	3
CO3	3	-	-	-	-	3	2	2	-	-	-	3	2	3	2
CO4	2	-	-	-	-	3	1	3	-	-	-	3	2	3	3
CO5	2	-	-	-	-	2	3	3	-	-	-	2	2	2	3
CO6	2		-	2	-	2	1	2	-	-	-	2	2	3	2

UBT823E L:T:P – 3:0:0

Total Hours/Week: 03

			_	
	10			
. L	J I	чI		

UNIT-II

10 Hours

Introduction

Different utilities. Role of utilities in process plant operations and criteria for selection and estimation of suitable utilities. Water: Water resources. Process water, Cooling water, drinking water and boiler feed water Quality Standards. Water treatment processes for drinking, process and boiler feed. Storage and handling of water. Types and selection of pumps, piping and accessories. Water pre treatment,

Air

Compressed air, blower air, fan air. Types of compressor and vacuum pumps and selection. Power requirements, performance and related calculations. Booster and receivers. Quality of compressed air for instruments and processes. Compressed air distribution system-piping and accessories. Air-water vapour system: humidification/ dehumidification and evaporative cooling-related calculations.

10 Hrs.

Steam and power

Steam generation in chemical plants. Types of boilers and waste heat boilers. Fuels-types, emissions and global warming, green fuels. Calorific value. Proximate and ultimate analysis. HHV, LHV and related calculations. Cogeneration power plants. CHPs and Boiler performance. Related Calculations. Economy of steam generation with different fuels, related calculation. Steam storage and handling-piping and accessories.

Refrigeration:

Different refrigeration systems and their characteristics. Air-conditioning systems. Coefficient of performance. Power requirements and refrigeration effect-related calculations for each type of refrigeration system. Refrigerant properties and selection. Some commonly used refrigerants and secondary refrigerants.

				UNIT–III						10 Hrs.
Insulation										
Insulation	Materi	ials &	Selec	tion-Econor	nics	of	insulation.	Insu	Ilating	factors.
Properties &	Classifica	tion. Cold	insulation	and cryoger	nic ins	sulation.				
Introduction	То	Process	Safety:	Intrinsic	&	Extrinsic	Safety.	The	Hazar	ds-Toxicity,

Flammability, Fire , Explosions. Sources of ignition, Pressure. Hazard and risk assessment methods. MSDS.

UNIT-IV

10 Hrs.

Safety devices

Pressure relief valves. Ruptures discs. Blow down systems. Flare systems. Flame arrestors. Deflagration arrestors and explosion suppression. Personal safety devices.

Process safety analysis

HAZAN and HAZOP comparison. Risk analysis and estimation. Safety check list. Computer based quantitative risk analysis.

Reference Books *

1. Thermal Engineering, B.K. Sarkar, Tata Mc Graw Hill, 8th Reprint, 1998.

2. Heat Engines, K.P. Roy, Media Promoters and Publishers, 1995.

3. Chemical Engineers Handbook, Perry, 8th Edition, 2007.

4. Chemical Engineering-Vol 6, R.K. Sinnot, Coulson and Richardson's, 3rd Edition, BH, Reprint, 2000.

Course Outcomes**

- 1. Ability to Storage and handling of water
- 2. Able to understand types of compressor
- 3. Able to analyze the economy of steam generation with different fuels
- 4. Able to study Hazard and risk assessment methods.
- 5. Ability to understand safety devices
- 6. Ability to compare HAZAN and HAZOP operations

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				P	rogra	mme	Out	come	es (PC	Ds)			Pro: Out	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	-		2	-	-	-	-	-	-	1	1	1
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3
CO5	2	1	-	2	-	2	-	2	-	-	-	-	1	3	1
CO6	1	2	3	2	-	3	-	1	-	-	-	-	1	3	1

UBT824F

L:T:P - 3:0:0

Total Hours/Week: 03

UNIT-I

UNIT-II

10 Hrs.

Introduction

Basic Concept of metabolic engineering overview of metabolism. Different models for cellular reactions, Mutation, mutagens mutation in metabolic studies.

Metabolic regulation

An overview of Cellular Metabolism, Transport Processes, Passive Transport, Facilitated Diffusion, Active Transport, Fueling Reactions, Glycolysis, ermentative Pathways, TCA Cycle and Oxidative Phosphorylation, Anaplerotic Pathways, atabolism of Fats, Organic Acids, and Amino Acids, Biosynthetic Reaction, iosynthesis of Amino Acids, Biosynthesis of Nucleic Acids, Fatty Acids, and Other Building Blocks, Polymerization, Growth Energetics

Metabolic flux

Metabolic flux analysis and its application, Methods for experimental determination of metabolic flux by isotope dilution method.

Applications of metabolic flux analysis

Amino Acid Production by Glutamic Acid Bacteria, Biochemistry and Regulation of Glutamic Acid Bacteria, Calculation of Theoretical Yields, Metabolic Flux Analysis of Lysine Biosynthetic Network in C. glutamicum, Metabolic Flux Analysis of Specific Deletion Mutants of C. Glutamicum, Metabolic Fluxes in Mammalian Cell Cultures, Determentation of Intracellular Fluxes., Computational Networks and Systems Biology

	UNIT–III	10 Hrs.
Regulation of metabolic pathways		

Regulation of Enzymatic Activity, Overview of Enzyme Kinetics, Simple Reversible Inhibition Systems, Irreversible Inhibition, Allosteric Enzymes: Cooperativity, Regulation of Enzyme Concentration, Control of Transcription Initiation, Control of Translation, Global Control: Regulation at the Whole Cell Level, Regulation of Metabolic Networks, Branch Point Classification, Coupled Reactions and the Role of Global Currency Metabolites.

Metabolic engineering in practice

Enhancement of Product Yield and Productivity, Ethanol, Amino Acids, Solvents, Extension of Substrate Range, Metabolic Engineering of Pentose Metabolism for Ethanol Production, Cellulose-Hemicellulose Depolymerization, Lactose and Whey Utilization, Sucrose Utilization, Starch Degrading Microorganisms, Extension of Product Spectrum and Novel Products, Antibiotics, Polyketides, Vitamins, Biopolymers, Biological Pigments, Hydrogen, Pentoses: Xylitol, Improvement of Cellular Properties, Alteration of Nitrogen Metabolism, Enhanced Oxygen Utilization, Prevention of Overflow Metabolism, Alteration of Substrate Uptake, Maintenance of Genetic Stability, Xenobiotic Degradation, Polychlorinated Biphenyls (PCBs), Benzene, Toluene, P-Xylene Mixtures (BTX).

Reference Books *

1. P.F. Stanbury and A. Whitkar. 2008, Principle of Fermentation Technology pergaman press,

- 2. Wang D I C Cooney C I Demain, A L ,2008, "Fermentation and enzyme Technology" John Willey,
- 3. Roberts, 2007 "Metabolism of Agrochemicals in Plants" Willey Int,.
- 4. David L. Nelson and Michael Cox, 2016, "Lehninger Principles of Biochemistry" –6th Edition
- 5. Lubert Stryer, 2010 "Biochemistry" Freeman & Co., Pub.

UNIT–IV

10 Hrs.

Course Outcomes**

- 1. Recall the concepts of cellular metabolism.
- 2. Explain the Basic concepts of metabolic engineering.
- 3. Explain Fundamentals of Metabolic flux analysis.
- 4. Apply the knowledge of metabolic flux analysis.
- 5. Apply the knowledge of regulatory mechanism for altering the metabolic pathways.
- 6. Design the metabolic pathways for desired product.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2			2							1	1	1
CO2	2	2	2		2	3							2	1	2
CO3	3	3	2		2	2						1	1	1	2
CO4	3	3	3		2	3						1	2	1	3
CO5	2	1		2		2		2					1	3	1
CO6	1	2	3	2		3		1					1	3	1

UBT825E L:T:P – 3:0:0

Total Hours/Week: 03

INDUSTRIAL WASTE WATER TREATMENT

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hours
Water and waste water engineering an overview Water quality, physical chemical and biological parameters of water, water quality standar indices. Waste water: terminology, impact of regulation on waste waterengineeri environmental concern in waste water management, waste water characteristics and trea current status and future trends, waste water reclamation and reuse, biosolids and residu Constituents of waste water, physical chemical and biological parameters of waste water, sa waste water effluent standards, sewage disposal methods.	rds,water quality ng, health and atment methods, aal management. mpling methods,
UNIT–II	10 Hrs.
 Primary and secondary treatment of waste water Screens, oil traps, grit chambers, coagulation, clariflocculation, oxidation ponds and lagoons, biological treatment : Activated sludge process and its modifications, trickling filter, biological and denitrification, anaerobic process, sludge disposal. Advanced waste water treatment Removal of dissolved organic, inorganic constituents and biological constituents, Filtration: m backwashing for slow sand and rapid sand filters, adsorption principle and isotherms, gas striexchange, advanced oxidation process. Membrane filtration 	Attached growth Il nitrification nodeling and ipping, ion
RO, UF, MF, NF, electrodialysis. Disinfection: chlorine dioxide, chloramines, ozonation, UV rad	diation.
UNIT–III	10 Hrs.
Waste water reclamation and reuse Waste water reuse application, need for water reuse, public health and environmental issues introduction to risk assessment for water reuse, different reuse options: Agriculture and land industrial reuse, ground water recharge, non-potable uses with case studies.	s in water reuse, Iscape irrigation,
UNIT-IV	10 Hrs.
Issues related to treatment plant performance Need for upgrading treatment plant performance, treatment process reliability and sel values, odour management, introduction to automatic process control, energy efficiency, water treatment plant performance by process optimization, important design consideration water treatment plants: Liquid stream, solid processing, odour control.	ection of design upgrading waste on for new waste
Reference Books *	
 John C. Geyer and Daniel A Okun, Jhon Hutey,1996. Water and Waste water engineer M Fair. Mark J. Hammer Jr. ,1997 ,Water and waste water Technology,, 4th Edition, Prentice Ha 	ing-Vol 2, Gordon III.
Course Outcomes**	
 Define water quality and explain methods to characterize water quality. Describe water quality standards and their impact. Explain primary and secondary treatment methods of waste water. 	

- 3. Explain primary and secondary treatment methods of waste water.
- 4. Apply membrane filtration techniques, and disinfection methods to purify waste water.
- 5. Analyze the importance of reclamation and reuse of waste water.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pr	ogra	mme	Out	come	es (PC	Ds)			Program Specific Outcomes (PSOs)			
1 2 3 4 5 6 7 8 9 10 11 12									1	2	3					
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1	
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2	
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-	
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-	
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1	
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-	

Total Hours/Week: 03		SEE N	1arks: 50
	UNIT-I		10 Hours
Introduction The philosophy behind organization active substances. Receptor-based a and candidate selection of molecules compounds Relationship between and Clinical pharmacology Pre-clinical development to suppor formulations, manufacture and supp compatibility, disposal; Concepts of P	of research. Disease target identification an pproaches, agonists, antagonists, enzyme in for exploratory human investigation. In vitro imal and human pharmacology. t testing in humans. Safety testing, Phare ly of materials, labeling and presentation, st harmacovigilance.	d selection. hibitors. Lea and In vivo maceutical d tability and s	Patenting new d optimization testing of new development - storage, purity,
	UNIT–II		10 Hrs.
Clinical importance of Therapeutic Interferon's, Interleukins and Addition Management of drugs Management of common acute and o of drug effects Adverse drug react Prescribing for particular populations poisoning. Patient compliance and inf	c Proteins, Antibodies, Enzymes; Hormor nal Regulatory Factors. chronic diseases. Major drug classes including ions (short term & long term). Benefit ar . Controlled drugs and drug dependence, Ove formation. Therapeutic Drug Monitoring.	ies and Gr g biologicals. id risk, Dru er dosage an	owth Factors, Measurement g interactions; d treatment of
poisoning. Patient compliance and im	UNIT-III		10 Hrs.
Healthcare marketplace National and local formularies. Produ and promotion Product life-cycle ma Principles of health economics Pharm Social, ethical issues patents and copyrights. Social-geneti sex determination. Ethical: somatic and committee function. Preservation and	act information (Generic v/s Rx), advertising a magement Product liability Codes of practice acoepidemiology Competition, in-licensing, c c discrimination: insurance and employment nd germ line gene therapy, clinical trials, the d clinical use of blood and blood components.	and claims Pi e including t o-marketing :, human clo right to info	roduct support he MHRA Blue ning, foeticide, rmation, ethics
	UNIT-IV		10 Hrs.
Clinical research Types of Epidemiology study desig prevalence surveys or cross-sectional Responses in Clinical Trials, Large Management in Clinical Research: Pharmaceutical Industry Perspective. Reference Books *	gns, ecological (correlation) studies, Case studies, case control studies, Clinical Trials, S Clinical Trials and Registries – Clinical General Principles and Guide to Source	reports and Small Clinical Research Ir Is, Clinical F	d case series, Trials, Placebo nstitutes, Data Research from
1. Garv Walsh., Biochemistry and F	Biotechnology, 2002, John Wiley & Sons Ltd.		
 Gallin and . J. I. Ognibene F. P. 2 Publication. William J. Williams, Ernest Beutl John Wiley & Sons 1td by Armed 	er, Allan JU. Erslev, Marshall A. Lichtman,200	rch by, 2nd I 5, Hematolo	Edition, Elsevier gy,

CLINICAL RESEARCH

Credits: 03

CIE Marks: 50

4. John Wiley & Sons Ltd by Arunabha Ray & Kavitha Gulati, 2007, Current Trends in Pharmacology IK Inti.

Course Outcomes**

UBT830E

L:T:P – 3:0:0

- 1. Exploit the knowledge to know the clinical importance of different therapeutic products
- 2. An integrated understanding of the formulations, manufacturing and supply of materials
- 3. Ability to study the philosophy behind organization of research Ability to understand control measures uised in drug and its control
- 4. Ability to elucidate the marketing strategies of pharma products
- 5. Ability to compare the social and ethical issues
- 6. Ability to inculcate the epidemiology study designs, case reports and case series

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes					Program Specific Outcomes (PSOs)										
	1 2 3 4 5 6 7 8									10	11	12	1	2	3
CO1	1	3	3	-	2	-	2	1	-	-	-	2	2	2	1
CO2	1	2	3	-	1	-	2	1	-	-	-	3	3	1	1
CO3	1	2	3	-	2	-	2		-	-	-	3	2	2	1
CO4	1	3	3	-	1	-	1	1	-	-	-	2	2	1	1
CO5	1	3	3	-	-	-	-	-	-	-	-	1	2	3	
CO6	1	3	3	-	1	-	2	-	-	-	-	3	3	3	3

UBT832E		Credit	s: 03
L:T:P – 3:0:0	HEALTH DIAGNOSTICS	CIE Mar	ks: 50
Total Hours/Week: 03		SEE Mar	[.] ks: 50
	UNIT-I		10 Hours
INTRODUCTION:	ter educer i la fractional disconcer i Descritta di		
Biochemical disorders, Immune d	isorders, Infectious diseases, Parasitic diseases, Parasitic diseases	seases, Geneti	c disorders
chromosomal disorders, single cell o	disorders and complex traits. Chromosomal	disorders : aut	.osomai; sex
DNA BASED DIAGNOSTICS			
G-banding, in situ hybridization (FIS)	H and on-FISH), and comparative genomic, h	hybridization (C	GH). Cancer
cytogenetics: spectral karvotyping. D	NA diagnostics: PCR based diagnostics: ligation	on chain reactic	on. Southern
blot diagnostics. array-based diagnost	stics. Genome sequencing and Metagenomic	s. DNA sequence	cing. genetic
profiling, single nucleotide polymor	phism. Haemoglobinopathies. Neuro develo	opmental disor	ders. Neuro
degenerative disorders. Dynamic	mutations. G-banded chromosomal prepa	arations for d	etection of
autosomes of autosomal/sex chr	romosomal disorders. (translocation, dele	etion, Down's	syndrome,
Klumefelter syndrome, Turner's syr	ndrome, etc.) FISH for detections of: transl	ocations, inver	sions (using
appropriate probes) (e.g., chro 9-22 t	ranslocation; X-Y translocation).		
	UNIT–II		10 Hrs.
Biochemical diagnostics			
Inborn errors of metabolism, haem	oglobinopathies, mucopolysaccharidoses, lip	oidoses, lipid pr	rofiles, HDL,
LDL, Glycogen storage disorders, amy	/loidosis		
Cell based diagnostics			
Antibody markers, CD Markers, FACS	, HLA typing, Bioassays		
	UNIT-III		10 Hrs.
Immunodiagnostics			
Introduction, Antigen-Antibody Reac	tions, Conjugation Techniques, Antibody Proc	luction, Enzyme	es and Signal
Amplification Systems, Separation a	and Solid-Phase Systems, Case studies rela	ted to bacteria	al, viral and
parasitic infections. Diagnosis of infe	ectious diseases, respiratory diseases (influer	iza, etc.) Viral (diseases-HIV
etc., bacterial diseases, enteric dise	eases, parasitic diseases and mycobacteriur	n diseases. Ph	age display,
Initiatioarrays, FACS.			
Impoint diagnostics	UNIT-IV		10 113.
Imaging Tachniques (Pasic Concents) Invasive and Non-Invasive Electrocardies	Tranhy (ECG)	lsos of ECG
Flectroencentalography (FEG) Use c	of FEG Computerized Tomography (CT) Uses	of CT Magneti	c Resonance
Imaging (MRI) uses of MRI Illtras	ound Imaging (US) Uses of Illtrasound Pla	unning and Org	anization of
Imaging Services in Hospital Introd	uction Planning Physical Facilities Layout	Organization (Organization
and Staffing, Records, Policies, Radiat	tion Protection.		o gamzation
Reference Books *			
1 Lisa Anne Shimeld 2000 Escenti	als of Diagnostic Microbiology		
2 Balley & Scott's 1998 Diagnosti	als of Diagnostic Microbiology		
3. Burtis & Ashwood Tietz 2005 T	ext book of Clinical Biochemistry		
Course Outcomes**			

- 1. Ability to study Biochemical disorders, chromosomal disorders.
- 2. Able to study DNA based diagnostics.
- 3. Analyse Biochemical diagnostics.
- 4. Understand cell based diagnostics.
- 5. Analyse Immunodiagnostics
- 6. Understand imaging diagnostics

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	L 2 3 4 5 6 7 8 9 10 11 12									1	2	3			
CO1	2	2	2	-		2	-	-	-	-	-	-	1	1	1	
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2	
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2	
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3	
CO5	1	3	3	-	-	-	-	_	-	-	-	1	2	3		
CO6	1	3	3	-	1	-	2	-	1	-	-	3	3	3	3	

UBT834E		Credits	s: 03
L:T:P – 3:0:0	PRODUCT DEVELOPMENT	CIE Marl	ks: 50
Total Hours/Week: 03		SEE Mar	ks: 50
	UNIT-I		12 Hours
Essentials of product development	discussion of the second state of the state balance of the state balance of		
The product development process, p	privacy policies and Knowledge of basic labor	atory procedure	es, Standard
Stability studios Stability Tosting of	ss nows in manufacturing, product life cyc	ie and competi	sting Stross
Testing storage conditions Manuf	facturing Process for Recombinant pharma	and stages of te	oduction of
nharmaceuticals by genetically engin	eered cells- hormones and vaccines. Approve	d Biotech Drugs	
phannaceaticals of generically engine	UNIT-II		10 Hrs.
Interpersonal Skills			
Understand analyze and apply the t	echniques and essentials of product develo	pment and und	erstand the
various guidelines along with techniq	ues in Pharma industries.		
Understand work output requirement	nts, company policies, delivery of quality wo	ork on time and	I report any
anticipated reasons for the delay,	effective interpersonal communication, con	flict-resolution	techniques,
importance of collaborative working	ng, multi-tasking, training the team memb	ers, knowledge	e of project
management.			
	UNIT-III		10 Hrs.
Reporting – power point presentation upstream and downstream teams. F (ADR) and their treatment. Activity products, geriatric products, veterina	ations, technical writing, Principal investig Problem Solving and Decision Making. Types screening, formulations of energy drinks, b ary products, immune boosters.	ator, communi s of adverse dru ars, sports drin	cation with ug reactions ks, fortified
	UNIT-IV		10 Hrs.
Safety and Security at workplace			
Different types of occupational heal measures. Use of safety gears, ma visitors. Health, safety and securit materials with pictorial symbols, Sa pipelines. Safety in bulk storage of ha	th hazards, knowledge of chemical substanc isks, gloves and accessories, evacuation pr y issues – types (illness, fire accidents). (fety in transportation of dangerous materia izardous substances.	es -characterist ocedures for w Classification of als by road, rai	ics & safety vorkers and dangerous I, ships and
Reference Books *			
1. Endrenyi, L., Declerck, D. and Ch	now, S. (2017).		
2. Biosimilar Drug Product Develop	oment. Boca Raton: CRC Press.		
3. Biochemistry and Biotechnology	y by Gary Walsh. (2002): John Wiley & Sons Lt	d.	
4. Good Manufacturing Practices	for Pharmaceuticals: A Plan for Total Quality	Control From	
Manufacturer to Consumer, Sid	ney J. Willig, Marcel Dekker, 5th Ed., 2000, 72	.3 pp.,	
5. Jain, N. (2011). Pharmaceutical	product development. New Delhi: CBS Publis	ners.	
Course Outcomes**			

- 1. Understand, analyze and apply the techniques and essentials of product development and understand the various guidelines along with techniques in pharma industry
- 2. Demonstrate the different inter personnel skills and project management skills
- 3. Ability to comprehend various techniques involved in reporting, decision making process and understand adverse effects of drugs.
- 4. Describe the formulation of various energy drinks and demonstrate the role of Upstream and Downstream marketing.
- 5. Analyze and list the various health hazards in industry.
- 6. Ability to understand importance of safety and implement in various industries.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1 2 3 4 5 6 7 8 9 10 11 12								12	1	2	3			
CO1	1	3	2	2	2	3	1	-	-	-	-	1	1	2	3
CO2	1	-	-	2	1	2	1	-	-	-	-	1	1	1	1
CO3	1	3	2	1	2	1	1	-	-	-	-	1	1	2	1
CO4	1	-	З	2	1	2	2	-	-	-	-	1	1	1	2
CO5	1	2	2	1	2	3	3	-	-	-	-	1	1	2	1
CO6	1	2	2	2	1	2	3	-	-	-	-	1	1	1	-